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Chapter 1

Introduction

Time-frequency analysis plays a central role in signal analysis. Already long time
ago it was recognized that a global Fourier transform of a signal is of little value
to analyze the frequency spectrum it. Transient signals evolving in time in an
unpredictable way necessitate the notion of frequency analysis that is local in time.
Why this is so can easily be illustrated with an example. Take a recording of
someone playing the piano. If we represent this piece of music as a function of
time, see Figure 1.1, we are able to see the transition from one note to the next,
but we get little insight about which notes are in play. On the other hand the
Fourier representation, see Figure 1.2, gives us a clear indication about the notes
played, but there is no information about the duration and the order of sequence
of the notes. Neither of the representations are very satisfactory. We will prefer
a representation which is local in both time and frequency, like music notation,
which tells the musician which note to play at a given moment. This is exactly
what we get if we use a time-frequency representation, see Figure 1.3. We are now
able to see which notes are in play and the order of sequence they are played.

One approach to obtain a local time-frequency analysis, suggested by various
scientists, is to cut the signal into slices and do a Fourier transform on these slices.
But the functions obtained by this crude segmentation are not periodic. The jump
at the boundaries is interpreted as a discontinuity, resulting in large Fourier coeffi-
cients at high frequencies.

In 1946 Dennis Gabor introduced the Gabor expansion or the inverse Gabor
transform [15] to perform simultaneous time-frequency analysis of signals. He
introduced a set of basis functions consisting of Gaussian windows modulated by
complex exponentials. It was initially seen as a purely theoretical tool since there
were no effective means by which it could be computed. Gabors work went almost
unnoticed until the early 80’s, when the work of Bastiaans and Janssen refreshed
the interest of mathematicians and engineers in Gabor analysis. During the 90’s
the development of time-frequency analysis has benefited from the rise of wavelet
theory, and for some time both theories grew in parallel. Today, time-frequency
analysis presents itself as an interdisciplinary area of research.

7



8 CHAPTER 1. INTRODUCTION

The applications of time-frequency analysis are many. On the applied side
time-frequency analysis deals with problems in signal analysis, communication
theory and image processing. In our thesis we develop a method using time-
frequency analysis for the removal of white noise from signals. Since the beginning
of the 90’s there has been considerably interest in the use of wavelet transforms for
the removal of noise from signals and images. The wavelet transform decompose
the signal using translation and dilation of a single basis function, and is a time-
scale analysis, not a time-frequency analysis. We will not treat wavelets in our
thesis, and the interested reader is refereed to the excellent textbook of Strange and
Nguyen [23].

The most employed method for noise removal has been the “WaveShrink”,
developed by Donoho and Johnstone [10] [12] [13]. This method uses a transform-
based filtering, working in three steps:

� Transform the noisy data into the wavelet domain, i.e. time-scale domain.

� Shrink the resulting coefficients, thereby suppressing those coefficients con-
taining noise.

� Transform back into the original domain.

In our thesis we develop a similar method, transforming the signal into the
time-frequency domain instead of the time-scale domain. To transform the signal
into the time-frequency domain we use the Gabor transform. We show that for
some signals our method performs better than the “WaveShrink”.

The thesis is organized in the following way: In the remaining part of this
chapter we give a short overview of the Fourier transform and the Zak transform.
In Chapter 2 we present the mathematical techniques for the Gabor transform and
the inverse Gabor transform. We treat both the critical sampled and the oversam-
pled case. In Chapter 3 we develop algorithms for the discrete Gabor transform
and the inverse discrete Gabor transform. We treat both the critical sampled and
the oversampled case and analyze the computational cost of the algorithms. The
algorithms are all based on the mathematical techniques presented in Chapter 2.
In Chapter 4 we develop a method using time-frequency analysis for the removal
of white noise from signals. We show that for some signals this method performs
better than the “WaveShrink”.
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Figure 1.1: The recording of someone playing the piano represented as a function
of time. We are able to see the transition from one note to the next, but we get little
insight about which notes are in play.
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Figure 1.2: The Fourier representation of someone playing the piano. We get clear
indication about the notes played, but there is no information about the duration
and the order of sequence of the notes.
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Figure 1.3: The time-frequency representation of someone playing the piano. We
are able to see which notes are in play and the order of sequence they are played.

1.1 Fourier transform

It is sometimes convenient to describe a signal x(t) say, not in the time domain,
but in the frequency domain by means of its frequency spectrum, i.e. the Fourier
transform of x(t). This frequency spectrum shows us the global distribution of the
energy of the signal as a function of frequency.

The Fourier transform originates from the work of the French mathematician
J.B. J. Fourier in the early nineteenth century. While many contributed to the field,
Fourier is honored for his mathematical discoveries and insight into the practical
usefulness of the techniques.

1.1.1 Continuous Fourier transform

For a continuous function of one variable � ����� , the Fourier transform will be de-
fined as

� �����	��
�� � �
������� ��������� �

(1.1)

and the inverse transform as

� �����	� ���� 
 �� � �
������� ����� � � �

(1.2)

where ! is the square root of " � and
�

denotes the exponential function

� �$# �&%('*)+��,��.- ! )�/102��,3�$4 (1.3)
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1.1.2 Discrete Fourier transform

To distinguish the discrete case from the continuous case, we will use square brack-
ets [ ] to denote a discrete signal, whereas we use curved brackets () to denote a
continuous signal. For a discrete function of one variable, ��� ��� , the Fourier trans-
form will be defined as

������� �
	 ���
����� ��� ��� � ��������� ��� 	 (1.4)

and the inverse transform as

��� ��� � �� 	 ���
� ��� �������

� ������� ��� 	 4 (1.5)

1.1.3 Discrete 2d Fourier transform

We can extend the 1 dimensional Fourier transform to 2 dimensions. This can be
done both in the discrete and continuous case, but we will restrict ourselves to the
discrete case her.

The discrete 2d Fourier transform of the array ���! � is given by

��� � �#"%$ � ��& � �
' ���
� ���

	 ���
� ��� �(�! �

� ���*)+��� �-, � ' �.����� ��� 	0/ � (1.6)

which is periodic in the discrete index � with period
�

and periodic in the discrete
index

"
with period

&
.

The inverse discrete 2d Fourier transform of the array �1� � �#"2$ � ��& � is given by

���3 � � �& � 	 ���
�����

' ���
, ���

��� � �#"2$ � ��& � � �4)5��� �0, � ' �.����� ��� 	-/ (1.7)

which is periodic in the discrete index 6 with period
&

and periodic in the discrete
index � with period

�
.

1.2 Zak transform

The Zak transform provides a way to represent a time function by a 2 dimensional
time-frequency function. The transform exists in both the discrete and continu-
ous case, but we will only treat the discrete case here. J. Zak was the first who
systematically studied this transform in connection with solid state physics [30]
[31] [32]. Some of its properties were known before Zak’s work, however. The
same transform is called Weil-Brezin map and it is claimed that the transform was
already known to Gauss. The Zak transform has interesting applications to signal
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analysis, and later we will show how the Zak transform can be applied to the Gabor
representation.

The discrete Zak transform of the discrete array ��� ��� is given by

���� � �#"2$ � ��& � � �
� � � � ��� �

- 6 � � � ������� �-, � ' � (1.8)

which is periodic in the discrete-frequency variable
"

with period
&

.
If we define

� � ��� as the summation of ��� ��� over distances �
& �

, where ����� ,
i.e.

� � ��� � �
�#� � � ��� �

-
�
& � � � (1.9)

we can rewrite the discrete Zak transform in the following way

���� � �#"2$ � ��& � � ' ���
� ���

� � � - 6 � � � ������� �0, � ' � (1.10)

The inverse discrete Zak transform of the array
���� � �#"2$ � ��& � is given by

� � � - 6 � � � �& ' ���
, ���

���� � �#"%$ � ��& � � ����� �-, � ' � (1.11)

which is a periodic sequence with period
&

.



Chapter 2

The Gabor representation

Introduction

The Gabor expansion or the inverse Gabor transform was introduced in 1946 by
Dennis Gabor [15] to perform simultaneous time-frequency analysis of signals.
He argued that the optimal representation for a signal is one which combines fre-
quency and locality information. For this purpose he introduced a set of basis
functions consisting of Gaussian windows modulated by complex exponentials. It
was initially seen as a purely theoretical tool since there were no effective means
by which it could be computed. During the 90’s, however, there emerged several
fast algorithms for the computation of the Gabor transform and its inverse.

In this chapter we present the Gabor uncertainty principle and the mathematical
techniques for the Gabor transform and the inverse Gabor transform. We treat
both the critical sampled and the oversampled case. The results in this chapter are
mainly influenced by the work of Bastiaans [3] [4], but the work of Qian and Chen
[19] and Wexler and Raz [28] are also used. However, we have tried to present the
material in our own way.

2.1 The Gabor uncertainty principle

When doing a time-frequency analysis of a signal it would be desirable to have no
limits on the resolution in the time and frequency domain. However, this is not
possible because the resolution in the time and frequency domain are reciprocal.
When increasing the resolution in the time domain, the resolution in the frequency
domain reduces. This is what Gabor proved in his uncertainty principle [15]. He
proved this by applying to arbitrary signals the same mathematical apparatus as
used in the Heisenberg-Weyl derivation of the uncertainty principle in quantum
mechanics. We will not present the complete proof here, our intention is to build
intuition, so we present a couple of informal derivations [18].

Suppose we are trying to measure the frequency of a tone. Intuitively, the
longer the sample we take, the more accurate our measurement will be. This sug-

13



14 CHAPTER 2. THE GABOR REPRESENTATION

gests that the error in measuring the frequency, ��� , is inversely related to the
duration of the measurement, � � . This intuition can be made a little more precise
by considering a very basic kind of frequency measurement. Suppose we have a
device that counts every time our signal reaches a maximum; then the number of
maxima in an interval of time � � will be the average frequency during that inter-
val. How long must � � be in order to guarantee that we can distinguish frequencies
differing by ��� ? This will occur when counts for � and � - ��� are guaranteed
to differ by at least one. That is,� � - ��� � � � "���� ��� �
or

����� ��� � 4 (2.1)

This is the basic Gabor uncertainty principle, it means that the product of the un-
certainties in frequency and time must exceed a fixed constant, and so the accuracy
with which one of them can be measured limits the best possible accuracy with
which the other can be measured. Heisenbergs uncertainty principle is a simple
corollary of (2.1), since according to quantum mechanics the energy of a photon
is proportional to its frequency, 	 ��
 � . Multiplying both sides of (2.1) by



(Plancks constant) yields

��	� ����
2�
which is one form of Heisenbergs principle. Of course, Heisenberg derived his
principle first. Gabors accomplishment was to show that the same mathematical
derivation applied to communication systems.

A more formal derivation of Gabors uncertainty principle is based on the ob-
servation that the ”spread” of a signal and its Fourier transform are inversely pro-
portional, see Figure 2.1. To accomplish this we must specify a way of measuring
the spread of functions. Although there are many ways to define these measures,
we define the nominal duration of a signal � to be the duration of a rectangular
pulse of the same area and amplitude at the origin as the signal, see Figure 2.2.
Thus the nominal duration � � is defined by the equation

� ��� � ��� ����� 
 �� �
� � ������� � � 4

Similar, the nominal bandwidth of the Fourier transform of � , � ��� � � � , is defined

� ��� � ��� ������
�� �
� � ������� � � 4

Next write
� � ��� ��� as the Fourier transform of � evaluated at

� ���
� � ��� ���*������


 �� � �
������� ����� � � � ��� � ��� ����

������

 �� � �

����� � ������ �

 �� �

� � ������� � �	� � ��� � ��� ��� 4
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a

b

c

d

Time domain Frequency domain

Figure 2.1: The “spread” of a signal and its Fourier transform are inversely propor-
tional. (a) A constant function in the time domain corresponds to a unit impulse
in the frequency domain. (b,c) As the width of a pulse in the time domain de-
creases, its spectrum in the frequency domain spreads. (d) A unit impulse in the
time domain has a spectrum which is a constant function.
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Figure 2.2: The nominal bandwidth of a spectrum is the width of a rectangular
pulse (shaded) that has height equal to the amplitude of the spectrum at the origin,
and that has the same area as the absolute value of the spectrum.

Therefore

� ��� � � ��� ���� � ��� ��� 4 (2.2)

Similarly, applying the inverse Fourier transform

� � ��� ���*������

 �� � �

������� ����� � � ��� � ��� ����
������

 �� � �

����� � � ���� �

 �� �

� � ������� � ��� ��� � � ��� ��� 4
Therefore

��� �
� � ��� ���� � ��� ��� 4 (2.3)

Multiplying (2.2) and (2.3) we get the general Gabor uncertainty principle

����� ��� � � ��� ���� � ��� ���
� � ��� ���� � ��� ��� � � 4 (2.4)

Thus we see that the nominal duration and the nominal bandwidth are reciprocals of
each other. In other words, there is a minimum possible simultaneous localization
of the signal in the time and frequency domains. We can decrease � � , and so
localize the signal better in the time domain, or decrease ��� , and so localize it
better in the frequency domain, but we can not localize it arbitrarily well in both
domains simultaneously.
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2.2 Continuous Gabor representation

Consider an elementary signal � ����� . The classical, and also Gabors original choice,
is a Gaussian, but the signal may have a rather arbitrary shape. The Gaussian,
however, have the advantage that each shifted and modulated version occupies the
smallest possible area in the time-frequency domain [3]. For this reason we will
choose the Gaussian shaped elementary signal

� ����� � � � ��� � � ��) � ��� / � � (2.5)

where the factor
� � ���

is added to normalize the energy to unity.
The Gabor expansion or the inverse Gabor transform of a continuous function

is given by

� �����	� �
� � � �

�
� � � � ���3 � � �! � �����$� (2.6)

where � �3 � �����	� � ��� " 6�� ��� �	� � �
and the time shift � and the frequency shift 
 satisfy the relationship 
�� � ��� ,
and where 6 and � may take all integer values. What we have done here is to
decompose the signal � ����� into a superposition of properly shifted (over discrete
distances 6�� ) and modulated (with discrete frequencies ��
 ) versions of the ele-
mentary signal � ����� .

The problem with this decomposition is that the basis functions � �! � produced
from the shifted and modulated versions of the elementary signal � ����� are not
orthonormal, i.e. their inner product are not zero. This makes the calculations
of the coefficients � �3 � difficult. To overcome this problem we try to find a bi-
orthonormal basis, i.e. we try to find a bi-orthonormal window function, denoted� �����

, such that

�(�! � �� � ��� �3 ��� �&
 � ����� ����! � ����� � �$� (2.7)

where � �3 � ����� � � ��� " 6�� ��� ��� � �
and the asterisk denotes complex conjugation. This is known as the Gabor trans-
form.

Lemma 2.2.1. For (2.7) to hold we must require the bi-orthonormality condition


 ���  � ����� ����3 � ����� � � ��� � � " 6 � � � ��" ��� � (2.8)

where � � � " 6 � �
� � p=m

�
�

p �� m
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Proof. Substituting (2.6) into (2.7) leads to

�(�! � � 
�� �� � � �
�

� � � � � �  � � �  � ������� � ��3 � ����� � �$4
Rearranging factors we get

�(�! � � �� � � �
�

� � � � � �  � 
 � �  � ����� � ��3 � ����� � �$4
For the equality to hold we must require the bi-orthonormality condition (2.8).

This bi-orthonormality condition guarantees that if we start with an array of
Gabor coefficients � �! � , construct a signal via (2.6) and subsequently substitute
this signal into (2.7), we end up with the original coefficients array. It can be shown
[3] that it also guarantees that if we start with a certain signal � ����� , construct its
Gabor coefficients � �! � via (2.7) and subsequently substitute these coefficients into
(2.6), we end up with the original signal. Hence the equations (2.6) and (1.6) form
a transform pair.

Though of great mathematical interest, the continuous Gabor transform and
its inverse are not suited for numerical computations. Computers require a finite
number of time steps, and can not work with an infinite time space. To overcome
this problem we need the discrete versions of the transforms. For those interested
in the continuous case we refer to [3] for further reading.

2.3 Discrete Gabor representation

As already mentioned, to be able to use computers in the computation of the Gabor
transform (2.7) and the inverse Gabor transform (2.6) we need discrete versions of
the transforms.

Let us consider a discrete signal ��� ��� , on the analogy of the inverse Gabor
transform for continuous signals (2.6) we define the inverse Gabor transform for
discrete signals in the following way

��� ��� � �
� � � �

	 ���
� ��� ���3 

� � �3 � � ��� � (2.9)

where � �! � � ��� � � � � " 6 � ��� ����� �
and the time shift

�
and the frequency shift � � ����� � are respective counterparts

of � and 
 � ����� � in the continuous case. It should be mentioned that � � ����� �
was Gabors originally choice and is called critical sampling. It is also possible to
choose �  ����� �

, this is called oversampling and possesses several advantages.
We treat oversampling in Section 2.4.
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The discrete elementary signal � � ��� is the sampled continuous elementary sig-
nal, with sampling distance � � � , i.e.

� � ��� � � � � �� � � � � ���+� � �() ��� 	-/ � (
�

odd) (2.10)

and � � ��� � � � � ������ � �� � � � � ��� � � ��)�� ��� ���� � 	-/ � (
�

even). (2.11)

As in the continuous case the Gabor coefficients � �3 � can be evaluated if we
can find a bi-orthonormal window function, denoted

� � ��� , such that

���3 � � �
��� � � ��� ���

� ��! � � ��� � (2.12)

where � �! � � ��� � � � � " 6 � ��� ����� � 4
(2.13)

This is known as the Gabor transform for discrete signals. In the critically sampled
form ( � � ����� �

) the Gabor transform for discrete signals is an array that is
periodic in the frequency variable � with period

�
. This periodicity in the Gabor

transform results from the discrete nature of the signal.
As in the continuous case we must require the following condition:

Lemma 2.3.1. For (2.12) to hold we must require the bi-orthonormality condition

�
��� � �

� �  � � ��� � ��! � � ��� ��� � � " 6 � � � ��" ��� � (2.14)

where � � � " 6 � �
� � p=m

�
�

p �� m

4
Proof. Substituting (2.9) into (2.12) leads to

�(�! � � �
��� � �

� �� � � �
	 ���
� ��� � �  � � �  � � ���

������! � � ��� 4
Rearranging factors we get

���3 � � �� � � �
	 ���
� ��� � �  �

�
��� � �

� �  � � ��� � ��! � � ��� 4
For the equality to hold we must require the bi-orthonormality condition (2.14).
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Thus by the same argumentation as in the continuous case the Gabor transform
(2.12) and the inverse Gabor transform (2.9) form a transform pair.

The problem with this definition is the infinite sum over 6 in (2.9) and the in-
finite sum over � in (2.12). In order to have a proper discrete Gabor representation
we need to truncate the summations. This can be achieved exactly only for finite
signals. Thus in what follows we assume that the signal ��� ��� is of finite length.
If the signal is infinite we can split the signal into parts and treat each part sepa-
rately. The length of the signal has to be a multiple of the time shift

�
, i.e. the

length must be
& �

, where
&

is a positive integer. This can always be achieved
by padding the end of the signal with zeros. In addition we define � � ��� and � � ���
as the summation of

� � ��� and � � ��� respectively over distances �
& �

, where ����� ,
i.e.

� � ��� � �
�#� � �

� � � - � & � � (2.15)

and

� � ��� � �
� � � �

� � � - � & � � 4 (2.16)

� � ��� and � � ��� are periodic with period
& �

, and are called the periodization of� � ��� and � � ��� respectively. Using this we can make fully periodized versions of
the Gabor representation [28]. The discrete inverse Gabor transform takes the form

��� ��� � ' ���
� ���

	 ���
� ��� �(�! 

� � �3 � � ��� � (2.17)

where
� �3 � � ��� � � � � " 6 � � � ������� ��� 	 (2.18)

and the discrete Gabor transform takes the form

�(�! � �
' 	 ���
����� ��� ����� ��3 � � ��� � (2.19)

where
� �3 � � ��� � � � � " 6 � � � ������� ��� 	 4 (2.20)

In the sequel we will discuss only discrete versions of the transforms. Hence
Zak, Gabor and Fourier transforms will henceforth refer to the discrete versions.

2.3.1 Calculating the window function

It is possible to calculate the window function directly from the bi-orthonormal
equation system (2.14). This is a deterministic equation system, and hence can
be solved with direct methods [19][28]. However when the length of the window
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function is large, i.e. when the length of ��� ��� is large, this equation system will
be huge and very time consuming to solve. Instead we use a different approach.
Based on [3] we state the following theorem, giving us the Zak transform of the
window function.

Theorem 2.3.1. We have the following relation between the Zak transform of the
elementary signal � � ��� and the Zak transform of the window function

� � ��� :
�� � � �#"2$ � ��& � � �� �� � � � �#"%$ � ��& �

4
(2.21)

Proof. We start with the bi-orthonormality condition (2.14) and choose � � � ��� ,
this gives � � " 6 � � � "!��� � �

���+� � �
� � � � � � ��3 � � � � � 4

Multiplying both sides with
� ��� � ��� �0, � ' �.����� ��� 	 � and taking the sum over 6 �� � � 4 4 4 ��& " ��� and � � � � � 4 4 4 � � " ��� , i.e. taking the 2 dimensional Fourier

transform of both sides [cf. (1.6)], we get

' ���
� ���

	 ���
� ���

� � " 6 � � � "!��� � ��� � ��� �-, � ' �.����� ��� 	 � �
' ���
� ���

	 ���
� ���

�
���5� � �

� � � � � ����3 � � � � � � ��� � ��� �0, � ' �.����� ��� 	 � 4 (2.22)

The product of the delta functions
� � "36 � � � "!��� is � only in the point 6 � � ��

, and zero elsewhere. In this point the exponential is 1, resulting in that the left
side of (2.22) equals � . Using this and (2.13) we get

� �
' ���
� ���

	 ���
� ���

�
��� � � �

� � � � � � � � � � " 6 � � � ��������� � � � 	 � ��� � ��� �-, � ' �.����� ��� 	 � 4
Rearranging factors we get

� � ' ���
� ���

�
���5� � �

� � � � � � � � � � " 6 � � � 	
���

� ���
� ��������� ) � � � � / � 	 �.� ������� �0, � ' 4

The complex exponential is a circular function, thus each sum of length
�

equals�
unless � � � � - � � , where � � � , i.e.

	 ���
� ���

� ��������� ) � � � � / � 	 �
� � � � �� � - � � �� � � � � - � � 4
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Thus making the substitution � � � � - � � we get

� � � ' ���
� ���

�� � � �
� � � - � � � � � � � -&� � " 6 � � � � ������� �0, � ' 4

Multiplying the right side with
� ����� � , � ' � ������� � , � ' � � and taking a final rear-

rangement we find that

� � � �� � � �
� � � - � � � � ������� � , � ' ' ���

� ���
� � � � -&� � " 6 � � � � ������) � � � / , � ' 4

Since the sum over � is infinite we can make the substitution 6 � � � " 6 , this
gives

� � ��� �� � � �
� � � - � � � � ������� � , � '�� � �

� �5� � �
� � � - 6 � � � � ������� � � , � '�� � 4

Comparing with (1.8) we see that the first summation is the Zak transform of the
elementary signal � � ��� and the second is the Zak transform of the window function� � ��� , i.e. � � � �� � � �#"2$ � ��& � ���� � � �#"2$ � ��& �
Solving for

�� � � � �#"2$ � ��& � and transposing both sides we get (2.21), which com-
pletes the proof.

We are now able to calculate the periodized window function � � ��� in an easy
way:

� Use (2.16) to calculate the
& �

periodic elementary function � � ��� , � �� � � 4 4 4 � � " ��� .

� Use (1.10) to calculate the Zak transform
�� � � �#"2$ � ��& � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the elementary function.

� Use (2.21) to calculate the Zak transform
�� � � �#"2$ � ��& � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the window function.

� Use the inverse Zak transform (1.11) to calculate the periodized window
function � � ��� .

The algorithms are treated in detail in Chapter 3. A problem with this approach
should be mentioned. If the Zak transform of � � ��� has zeros, the relation (2.21) has
no solution. On the discrete grid we have no zeroes, but the method is numerically
unstable. The solution to this problem is oversampling, which we present in the
next section.
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2.3.2 Calculating the Gabor transform

Having found the periodized window function � � ��� we can easily calculate � �! �
using (2.19), however the computational cost of this is huge. Each coefficient
requires � � & � �

operations, resulting in a total cost of � � & � � � �
operations to

calculate all the
& �

coefficients. Remember that
& �

is the the length of the
vector ��� ��� , and thus for large vectors this will be extremely time consuming.

One approach to reduce the computational cost of (2.19) is to use sampled FFT
[19]. Defining

� � � ��� � ��� ����� � � � " 6 � �
we can rewrite (2.19) in the following way:

�(�! � � ' 	 ���
����� ��� ����� � � � " 6 � � � ��������� ��� 	

� ' 	 ���
�����

� � � ��� � ��������� ��� 	
� ' ���� ��� 	 ���

���+���
� � � � � - � � � � ��������� ) � 	 �1� � / � 	

� ' ���� ��� 	 ���
� � ���

� � � � � - � � � � ��������� � � � 	 4
The second summation is a

�
-point FFT, and thus we can calculate all the coeffi-

cients using
& � �

-point FFTs, having a total cost of � � & � ��� '�� � �
operations.

This is the easiest algorithm to implement, but if the length of the vector ��� ��� is
large even this is a very slow algorithm.

To calculate the discrete Gabor transform for large vectors we need to reduce
the computational cost even more. The next algorithm use the following important
theorem based on [3]:

Theorem 2.3.2. The Fourier transform of the coefficients � �! � can be found as the
scaled product of the Zak transform of the signal ��� ��� and the Zak transform of the
window function

� � ��� , i.e.

���� � �#"2$ � ��& � � � ���� � �#"2$ � ��& � ���� � � �#"2$ � ��& � 4 (2.23)

Proof. The proof of this theorem can be found in the appendix.

If we combine this theorem and theorem 2.3.1 we get the following relation

���� � �#"%$ � ��& � � ���� � �#"%$ � ��& �
�� � � �#"2$ � ��& � (2.24)

Using this relation we can find the Gabor coefficients � �3 � in the following way:
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� Use (2.16) to calculate the
& �

periodic elementary function � � ��� , � �� � � 4 4 4 � � " ��� .

� Use (1.10) to calculate the Zak transform
�� � � �#"2$ � ��& � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the elementary function.

� Use (1.10) to calculate the Zak transform
���� � �#"2$ � ��& � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the signal ��� ��� .

� Use (2.24) to calculate the Fourier transform
���� � �#"2$ � ��& � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the coefficients � �! � .

� Use the inverse Fourier transform (1.7) to calculate the coefficients � �3 � .

In Chapter 3 we present a fast implementation of this algorithm, and prove that
this method reduces the computational cost to � � & � � '�� � ����� � &�� � � � � opera-
tions.

2.3.3 Calculating the inverse Gabor transform

We often need to calculate the inverse operation, i.e. calculate the signal ��� ��� from
a given set of coefficients � �! � . As for the calculation of the Gabor transform,
using the Zak transform we can develop a fast algorithm for this. The algorithm
uses the following corollary based on [3]:

Corollary 2.3.1. The Zak transform of the signal x[n] can be found as the prod-
uct of the Fourier transform of the coefficients � �3 � and the Zak transform of the
elementary function � � ��� , i.e.

���� � �#"2$ � ��& � � ���� � �#"2$ � ��& � �� � � �#"2$ � ��& � 4 (2.25)

Proof. The proof of this corollary follows directly from theorem 2.3.1 and theorem
2.3.2.

Using this we can find the inverse Gabor transform in the following way:

� Use (2.16) to calculate the
& �

periodic elementary function � � ��� , � �� � � 4 4 4 � � " ��� .

� Use (1.10) to calculate the Zak transform
�� � � �#"2$ � ��& � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the elementary function.

� Use (1.6) to calculate the Fourier transform
���� � �#"2$ � ��& � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the coefficients � �! � .

� Use (2.25) to calculate the Zak transform
���� � �#"2$ � ��& � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the signal ��� ��� .

� Use the inverse Zak transform (1.11) to calculate the signal ��� ��� .
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In Chapter 3 we present a fast implementation of this algorithm, and prove that
this method reduces the computational cost to � � & � � '�� � ����� � & � � � � � opera-
tions.

2.4 Oversampled Gabor representation

In the last section we used frequency shift � � ����� �
, which was Gabors origi-

nally choice. This led to a numerically unstable representation and thus we need
to modify this choice. Using oversampling, i.e. modifying the frequency shift to
�  ����� �

, we can make stable algorithms [3].
The oversampled inverse Gabor transform takes the form [cf. (2.17)]

��� ��� �
' ���
� ���

� ���
� ��� ���3 � � �3 � � ��� � (2.26)

where
� �3 � � ��� � � � � " 6 � � � ������� ��� �

(2.27)

and
� � �

. The oversampled Gabor transform takes the form [cf. (2.19)]

�(�! � � ' 	 ���
����� ��� ����� ��3 � � ��� � (2.28)

where
� �3 � � ��� � � � � " 6 � � � ������� ��� � 4

(2.29)

In general there are no restrictions on
�

other than it must be integer and larger
than

�
[3]. We will, however, only treat integer oversampling, i.e. we require that�

is a divisor of
�

. That is
� � � � � . For convenience we introduce an integer� � � � �

.
As in the case of critical sampling we treat signals ��� ��� of finite length

& �
.

This can always be achieved by padding the end of the signal with zeroes. We
present the material in a different order than we did for the critically sampled case.
Instead of starting with the calculation of the window function we start with the
calculation of the Gabor transform and the inverse Gabor transform. We then show
how expressing the Gabor transform and the inverse Gabor transform as vector
products can be used for the calculation of the window function.

2.4.1 Calculating the Gabor transform

As for the critically sampled case we use the Zak transform for the calculation of
the Gabor transform. We have the following important theorem based on [3]:

Theorem 2.4.1. The Fourier transform of the coefficients � �! � can be found as the
scaled product of the Zak transform of the signal ��� ��� and the Zak transform of the
window function

� � ��� , i.e.
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��1� � �#" - � & � � $ � ��& � � � ���� � �#"%$ � ��& � � � ���� � � �#" - � & � � $ � ��& � � (2.30)

where � � � � �
and � �

� � � 4 4 4 � � " ��� .
Proof. We start with the oversampled Gabor transform (2.28)

���3 � � ' 	 ���
���5��� ��� � � ��� � � � � " 6 � � � ��������� � � � � 4

Multiplying both sides with
� ��� � ��� �0, � ' �.����� ��� � � and taking the sum over 6 �� � � 4 4 4 ��& " ��� and � � � � � 4 4 4 � � " ��� , i.e. taking the 2 dimensional Fourier

transform of both sides [cf. (1.6)], we get

��� � �#"2$�&�� � � � ' ���
� ���

� ���
� ���

� ' 	 ���
���+��� ��� � � ��� � � � � " 6 � � � ��������� � � � � �.� ���4)5��� �0, � ' �.����� ��� � / 4

Rearranging factors we get

��� � �#"2$�&�� � � � ' ���
� ���

� ���
� ��� ��� �

� ��� � � � � " 6 � � � ' 	 ���
� � ���

� ��������� ) � � � � / � � � � ������� �0, � ' 4
The complex exponential is a circular function, thus each sum of length

�
equals�

unless � � � � - � �
, where ����� , i.e.

� ���
� ���

� ��������� ) � � � � / � � � � � � � �� � - � � �
� � � � � - � �

4
Thus making the substitution � � � � - � �

we get

��� � �#"2$�&�� � � � � ' ���
� ���

�
� � � � ��� �

- � � ��� � � � - � � " 6 � � � ������� �0, � ' 4
Multiplying the right side with

� ����� ��, � � ' � ������� ��, � � ' � � , where � � � � �
, and

taking a final rearrangement we find

��� � �#"2$�&�� � � � � �
� � � � ��� �

- � � � � ������� ��, � � ' ' ���
� ��� �

� � � - � � " 6 � � � ������) � � � � / , � ' 4
Using that

� � � � we get

��� � �#"2$�&�� � � � � �
� � � � ��� �

- � � � � ������� ��, � � ' ' ���
� ��� �

� � � - � �	� " 6 � � � � �����() � � � � / , � ' 4
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Since the sum over � is infinite we can make the substitution 6 � � �	� " 6 , this
gives

�1� � �#"2$�& � � � � � � �
� � � � ��� �

- � � � � ������� ��, � � '�� � ' ���
� �+���

� � � - 6 � � � � ������� � � , � ' � � 4
Comparing with (1.8) and (1.10) we see that the first summation is the Zak trans-
form of the signal ��� ��� and the second is the Zak transform of the window function� � ��� , i.e.

��1� � �#"2$ � ��& � � � ���� � �#"2$ � ��& � � � ���� � � �#"2$ � ��& � 4
We finally replace

"
by

"�-
�
& � � and use the periodicity property of the Zak trans-

form
���� � �#"2$ � ��& � �.� , this gives

��1� � �#" - � & � � $ � ��& � � � ���� � �#"2$ � ��& � � � �� � � � �#" - � & � � $ � ��& � �
which completes the proof.

Note that in Gabors original case of critical sampling (� � � � � � �
), (2.30)

takes the simple product form (2.23):

���� � �#"2$ � ��& � � � ���� � �#"2$ � ��& � ���� � � �#"2$ � ��& � 4
Using this theorem we can find the oversampled Gabor transform in the fol-

lowing way:

� Calculate the Zak transform
�� � � �#" - � & � � $ � ��& � ,

� � � � � 4 4 4 � � " ��� , " � � � � 4 4 4 ��& � � " ��� and ���
� � � 4 4 4 � � " ��� ,

of the window function (see Section 2.4.3).

� Use (1.10) to calculate the Zak transform
���� � �#"%$ � ��& � � � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the signal ��� ��� .

� Use (2.30) to calculate the Fourier transform
��1� � �#" - � & � � $ � ��& � ,

� � � � � 4 4 4 � � " ��� , " � � � � 4 4 4 ��& � � " ��� and ���
� � � 4 4 4 � � " ��� ,

of the Gabor coefficients � �3 � .
� Use the inverse Fourier transform (1.7) to calculate the Gabor coefficients
���3 � .

In Chapter 3 we present detailed algorithms and analyze the computational cost of
this method.
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2.4.2 Calculating the inverse Gabor transform

As for the critically sampled case we use the Zak transform for the calculation of
the inverse Gabor transform. We have the following important theorem based on
[3]:

Theorem 2.4.2. The Zak transform of the signal x[n] can be found as the scaled
sum of the products of the Fourier transform of the coefficients � �3 � and the Zak
transform of the elementary function � � ��� , i.e.

���� � �#"%$ � ��& � � � � ��
� ���
�#���

���� � �#" - � & � � $ � ��& � �� � � �#" - � & � � $ � ��& � 4 (2.31)

Proof. The proof of this theorem can be found in [3].

Using this theorem we can find the inverse Gabor transform in the following
way:

� Use (2.16) to calculate the
& �

periodic elementary function � � ��� , � �� � � 4 4 4 � � " ��� .

� Use (1.10) to calculate the Zak transform
�� � � �#" - � & � � $ � ��& � ,

� � � � � 4 4 4 � � " ��� ,
"
�
� � � 4 4 4 ��& � � " ��� and � �

� � � 4 4 4 � � " ��� ,
of the elementary function.

� Use (1.6) to calculate the Fourier transform
���� � �#" - � & � � $ � ��& � ,

� � � � � 4 4 4 � � " ��� ,
"
�
� � � 4 4 4 ��& � � " ��� and � �

� � � 4 4 4 � � " ��� ,
of the Gabor coefficients � �3 � .

� Use (2.31) to calculate the Zak transform
���� � �#"2$ � ��& � � � ,

� � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& � � " ��� , of the signal ��� ��� .

� Use the inverse Zak transform (1.11) to calculate the signal ��� ��� .
In Chapter 3 we present detailed algorithms and analyze the computational cost of
this method.

2.4.3 Calculating the window function

We have shown how the Gabor transform and the inverse Gabor transform can be
calculated given the window function

� � ��� . In this section we address the problem
of calculating this window function. In the critically sampled case we used theorem
2.3.1 for the calculation of the window function. This theorem followed directly
from the bi-orthonormality condition (2.14). In the oversampled case there are
no known ways of using the bi-orthonormality condition in a similar way. Thus
we have to choose a different approach. We express the Gabor transform and the
inverse Gabor transform as vector products and show how this can be used for the
calculation of the window function.
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The Fourier transform
��1� � �#" - � & � � $ � ��& � can be split into the � functions

�� � � � �#" � � ���� � �#" - � & � � $ � ��& � �
where � �

� � � 4 4 � � " ��� . Likewise we can split the Zak transforms
�� � � �#" -

�
& � � $ � ��& � into the � functions

�� � � � �#" � � �� � � �#" - � & � � $ � ��& � �
and the Zak transform

�� � � �#" - � & � � $ � ��& � into the � functions
�� � � � �#" � � �� � � �#" - � & � � $ � ��& � 4

Using vector notation the � functions
�� � � � �#" � can be combined into a � -dimensional

column vector

�� �
����
�

�� � � � �#" ��� � � � �#" �
...�� � ��� � � �#" �

�����
� 4

Likewise the � functions
�� � � � �#" � can be combined into the � -dimensional row vec-

tor 	
 ��� �� � � � �#" � �� � � � �#" � 4 4 4 �� � ��� � � �#" �� � (2.32)

and the � functions
�� � � � �#" � into the � -dimensional row vector	� ��� �� � � � �#" � �� � � � �#" � 4 4 4 �� � ��� � � �#" �� 4

Using these vectors the Gabor transform (2.28) can be expressed as the product�� � �
	� � �� � (2.33)

where we have adopted the short hand notation
�� � ���� � �#"2$ � ��& � . The inverse

Gabor transform (2.26) takes the form

�� � ��
	
 �� 4 (2.34)

Substituting (2.33) into (2.34) we get the relation

�� � �

�
	
 	� � �� � (2.35)

which should hold for any arbitrary vector
	� , i.e. for any arbitrary signal ��� ��� .

Thus this condition leads immediately to the corollary

Corollary 2.4.1. For the Gabor transform (2.33) and the inverse Gabor transform
(2.34) to form a transform pair we must impose the following bi-orthonormality
condition �

�
	
 	� � � � 4 (2.36)
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Using this we can find the window function as the solution to (2.36), however,
there is one problem. We have � unknowns and only one equation, thus the system
is underdetermined. This is due to the fact that in oversampling the set of shifted
and modulated versions of the elementary signal � � ��� is overcomplete. Thus the
window function

� � ��� that corresponds to an elementary signal � � ��� is not unique.
What we do is to find the solution in the sense of the minimum � � norm.

This can be achieved by the so-called generalized (Moore-Penrose) inverse [6]
	
 � ,

defined by 	
 � � 	
 �*� 	
 	
 � � ��� 4
The optimum solution

��� � � then reads	� � � � � �
�
� 	
 � � � (2.37)

and the optimum solution
�� � � � reads�� � � � � � � 	
 �	� �� 4 (2.38)

Using 2.37 we can calculate the Zak transform
�� � � �#" - � & � � $ � ��& � , � �� � � 4 4 4 � � " ��� , "

�
� � � 4 4 4 ��& � � " ��� and � �

� � � 4 4 4 � �" ��� , of the window
function in the following way:

� Use (2.16) to calculate the
& �

periodic elementary function � � ��� , � �� � � 4 4 4 � � " ��� .

� Use (2.37) to calculate the Zak transform
�� � � �#" - � & � � $ � ��& � ,

� � � � � 4 4 4 � � " ��� ,
"
�
� � � 4 4 4 ��& � � " ��� and � �

� � � 4 4 4 � � " ��� ,
of the window function.



Chapter 3

Algorithms

In this chapter we develop algorithms for the Gabor transform and the inverse Ga-
bor transform. We treat both the critical sampled and the oversampled case and
analyze the computational cost of the algorithms. The algorithms are all based on
the mathematical techniques presented in Chapter 2. We refer to the method as the
Zak-Gabor method.

It should be mentioned that there exists methods based on relaxation networks
[9], matrix inversion [14] [26], unitary matrix factorization [20] [25] and conjugate
gradients [24]. However, a performance analysis [7] between relaxation networks,
matrix inversion and the Zak-Gabor method in the critical sampled case shows
that the Zak-Gabor approach is very stable, accurate and by far the most rapid of
the three. The unitary matrix factorization method is essentially the same as the
Zak-Gabor method. Both are based on the FFT and the main difference is how
the methods are presented, unitary matrix factorization versus the Zak transform.
The conjugate gradient (CG) method is iterative and the efficiency depends on the
convergence rate of the CG. It is mainly used when it is important not to have any
restrictions on the lattice parameters.

We start with a short introduction to the Fast Fourier transform and the inverse
Fast Fourier transform. We then define some notation before we present algorithms
for the 2d Fourier transform and its inverse, the Zak transform and its inverse and
the periodization of the elementary function. Using these algorithms we present
algorithms for the critical sampled Gabor transform and its inverse. At the end we
extend these algorithms to handle integer oversampling.

3.1 Fast Fourier transform and its inverse

The ability to develop fast algorithms for the Gabor transform and the inverse Ga-
bor transform relies on fast computation of the Fourier transform (1.6) and the
inverse Fourier transform (1.7). This can be achieved using the Fast Fourier trans-
form (FFT) and the inverse Fast Fourier transform (IFFT).

The idea behind the FFT and the IFFT is a divide and conquer approach to

31
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0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
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1     3     5     7     9     11     13     150     2     4     6     8     10     12     14
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2 signals of
8 points

4 signals of
4 points

8 signal of
2 points

16 signals of
1 point

1 signal of
16 points

Figure 3.1: The FFT decomposition. A
�

-point signal is decomposed into N
signals, each containing a single point. Each stage separates the even and odd
numbered samples.

recursively break up the original
�

-point sample into two (
� ���

) sequences, see
Figure 3.1. This is because a series of smaller problems are easier to solve than
one large one. The Fourier transform and the inverse Fourier transform requires� � " � � � complex multiplications and

� � � " � � complex additions as opposed
to the FFT and IFFT approach of breaking it down into series of 2 point samples
which only require 1 multiplication and 2 additions and the recombination of the
points which is minimal. The result is that the computational cost reduces from
� � � � �

operations to � � � � '�� � � operations. Details of the FFT and the IFFT can
be found in several textbooks [2] [21].

For most programming languages, such as C/C++, matlab and fortran, algo-
rithms for calculating the FFT and IFFT can be downloaded from the internet.

3.2 Notation

Matrix indexing

Having a
&�� �

matrix
�

we define the following index notations.
� � � � !�� returns

the element at row number � and column number ! . � ��� � !�� returns every element
at column number ! . � � � � � � returns every element at row number � . � ��� � ��� !��.���
returns the sub matrix

� �
����
�
� � � � � � � � � � � - !�� 4 4 4 � � � � ���� � � � � � � � � � � - !�� 4 4 4 � � � � ���

...
...

...� � & � � � � � &�� � - !�� 4 4 4 � � & � ���

�����
� �
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and
� � � � ! �(� � � � returns the sub matrix

� �
����
�

� � � � � � � � � � � � 4 4 4 � � � � � �� � � - ! � � � � � � - ! � � � 4 4 4 � � � - ! � � �
...

...
...� ��� � � � � ��� � � � 4 4 4 � ��� � � �

�����
� 4

All indexes start at 1.
Example: Having the

� ���
matrix

� �
���
�
� � �� � �� � �
� � � � � �

����
� �

� � � �	� � returns
� � � � ,

� ��� �	� � returns
�
�3� � � � � � � � and

� � � � � � returns
� � � � � � � � � � .� ��� � � � � � � � returns the sub matrix

��� � ���
�
� �� �� �
� � � �

����
� �

and
� � � � � � �3� � � returns the sub matrix

��� �� � � �� � ��� 4
Matrix operations

�
�

* � denotes the product of
�

and � . The number of columns of
�

must
equal the number of rows of � unless one is scalar. A scalar can be multi-
plied into anything.

�
�

.* � denotes the element-by-element multiplication of
�

and � .
�

and� must have the same dimensions unless one is scalar. A scalar can be
multiplied into anything.

�
�

./ � denotes the element-by-element division of � into
�

.
�

and � must
have the same dimensions unless one is scalar. A scalar can be divided with
anything.

�
� �

denotes the non-conjugate transpose of
�

.

�
� �

denotes the conjugate transpose of
�

.
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Sum of elements

For vectors, ��� & � � � is the sum of the elements of � . For matrices, ��� & � � �
is

a vector with the sum over each column.
Example: Having the matrix

� �
���
�
� � �� � �� � �
� � � � � �

����
� �

��� & � � �
gives the vector � � � � � � � � �	��� �

Vector

The method � ��� ��� � �
	 � � �
returns the vector

��	 ��	 - � � 4 4 4 � � � .
Example: � �� ��� � � " � � �*� returns

�
-1,0,1,2,3 � .

Comments

A Line starting with a � -sign is a comment.

Length of vector

The method
" � � � � 
 � � � returns the number of elements in the vector � .

Vector concatination

The method
��� � � � � � ��� � ��� � appends the vector ��� to the end of the vector ��� .

Example: Having the vectors ��� � � � � � �	� � and ��� � � � � � � � � ,
��� � � � � � ��� � ��� �

returns the vector
� � � � �	�3� � � � � � � .

Matrix replication

The method �
� � 6 � � � � ��&�� � � replicates the matrix

�
into a

& � �
block matrix.

Example: Having the matrix

� �
���
�
� � �� � �� � �
� � � � � �

����
� �

�
� � 6 � � � � � � � � � returns the � � � block matrix

� � � � � �  �
���
�
� � � � � �� � � � � �� � � � � �
� � � � � � � � � � � �

����
� 4
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Fast Fourier transform and its inverse

Having the vector � � � � � � � � � 4 4 4 � � 	 ��� � of length
�

we define ����� � � � as an
algorithm calculating the discrete Fourier transform

������� � 	 ���
����� ��� ��� � ��������� ��� 	 (3.1)

using � � ��� '�� � � operations.
Likewise we define ������� � � � as an algorithm calculating the discrete inverse

Fourier transform

��� ��� � �� 	 ���
� ��� �������

� ������� ��� 	 (3.2)

using � � ��� '�� � � operations.

Vector to matrix decomposition

Having the vector � � � � � � � � � 4 4 4 � � ' 	 ��� � of length
& �

we define
&�� � '�� 	 � � �

as an algorithm decomposing the vector � into the
& � �

matrix

� �
����
�

� � 4 4 4 � 	 ���� 	 4 4 4 � � 	 ���...
. . .

...� ' ) 	 ��� / 4 4 4 � ' 	 ���

�����
� 4

Example : Having the vector � � � � � � �	�3� � � � � � � � � � � � � � � � �*� � � � � , &�� � � � � � � �
returns the matrix

� �
���
�
� � �� � �� � �
� � � � � �

����
� 4

Matrix to vector decomposition

Having the
& � �

matrix

� �
����
�

� � � 4 4 4 � � 	� � � 4 4 4 � � 	...
. . .

...
� ' � 4 4 4 � ' 	

�����
�

we define 	 	�
 � � � as an algorithm decomposing the matrix
�

into the vector� � � � � � � 4 4 4 � � � 	 � � � � � 4 4 4 � � � 	 � 4 4 4 � � ' � � 4 4 4 � � ' 	 � of length
& �

.
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Example: Having the matrix

� �
���
�
� � �� � �� � �
� � � � � �

����
� �

	 	�
 � � � returns the vector � � � � � � �	�3� � � � � � � � � � � � � � � � �*� � � � � .

3.3 Critical sampled Gabor representation

We start this section presenting algorithms for the 2d Fourier transform and its
inverse, the Zak transform and its inverse and the periodization of the elementary
function. Using these algorithms we present algorithms for the critical sampled
Gabor transform and its inverse.

3.3.1 The 2d Fourier transform and its inverse

Using the FFT and IFFT we develop an algorithm calculating the 2d Fourier trans-
form (1.6) of a

& � �
matrix � . Comparing (1.6) with (3.1) and (3.2) we see

that this can be done by first taking the FFT of the columns of � , and then take the
IFFT of the rows. Since the IFFT is scaled by the factor � � � we have to multiply
the result by the factor

�
. To be consistent with the definition (1.6) we transpose

the final result.

Algorithm 1 The 2d Fourier transform.
INPUT:

& � �
matrix � .

OUTPUT:
� � &

matrix � containing the 2d Fourier transform of � .

% Fourier transform columns.
for � ��� to

� " � do
� � ��� � � ��� ��� � � � ��� � � � �

end for

% Inverse Fourier transform rows.
for � ��� to

& " � do
� � � � � ��� ��� � � ��� � � � � � � � � �

end for

% Transpose matrix.

��� �
�

Likewise we calculate the inverse 2d Fourier transform (1.7) of a
� �3&

matrix
� by first taking the IFFT of the rows of � , and then take the FFT of the columns.
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We then scale the result with the factor � � � & � �
from (1.7), but since the IFFT is

scaled by the factor � � & we only scale the result by the factor � � � . In addition
we transpose the final result to be consistent with the definition (1.7).

Algorithm 2 The 2d inverse Fourier transform.

INPUT:
� � &

matrix � .
OUTPUT:

& � �
matrix � containing the inverse 2d Fourier transform of � .

% Inverse Fourier transform rows.
for � ��� to

� " � do
� � � � � � ��� ������� � � � � � � � �

end for

% Fourier transform columns.
for � ��� to

& " � do
� ��� � � ��� � ��� � � � ��� � � � �

end for

% Scale and transpose matrix.
��� �

	
� � �

Computational cost

The 2d Fourier transform requires
�

FFT operations and
&

IFFT operations. Each
FFT operation requires � � & � '��0& �

operations and each IFFT operation requires
� � � � '�� � � operations. In addition the matrix transpose requires � � & � �

oper-
ations. This gives a total cost of � � & ��� '��-& � - � � & � � '�� � �

+ � � & � �
=

� � & � � '�� � � ��� � & � � � � � .
The inverse operation requires

�
IFFT operations and

&
FFT operations.

Each FFT operation requires � � � � '�� � � operations and each IFFT operation re-
quires � � & � '��-& �

operations. In addition the matrix transpose requires � � & � �
operations. This gives a total cost of � � & ��� '�� � � - � � & � � '��-& �

+ � � & � �
= � � & � � '�� � ����� � &�� � � � � .
3.3.2 The Zak transform and its inverse

Using the FFT we develop an efficient algorithm calculating the ZAK transform���� � �#"2$ � ��& � , � � � � � 4 4 4 � � " ��� and
"
�

� � � 4 4 4 ��& " ��� , of a vector � of length& �
.
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We decompose the vector � � � � � � � � � 4 4 4 � � ' 	 ��� � into the
& � �

matrix

� �
����
�

� � 4 4 4 � 	 ���� 	 4 4 4 � � 	 ���...
. . .

...� 	 ) ' ��� / 4 4 4 � ' 	 ���

�����
� 4

What we have achieved is that column number � contains the elements� � � - 6 � � , where 6 �
� � � � � 4 4 4 ��& " ��� . Comparing with (1.10) we see that

the Zak transform now easily can be calculated taking the FFT of each column in�
. The resulting matrix is transposed into a

� � &
matrix

	�
containing the Zak

transform of the vector � .

Algorithm 3 The Zak transform.
INPUT: Vector � of length

& �
, lattice parameters

&
and

�
.

OUTPUT:
� � &

matrix

	�
containing the Zak transform of � .

% Decompose vector into an
& � �

matrix.� � � &�� � '�� 	 � � �
% Fourier transform columns.
for � ��� to

� " � do� ��� � � ��� ��� � � � � ��� � � � �
end for

% Transpose matrix.	� � � �
The inverse operation takes the

� � &
matrix

	�
and returns the vector � . We

transpose the matrix

	�
and take the IFFT of each column. This returns the matrix�

. Decomposing the matrix row by row into a vector, as described in Section 3.2,
returns the vector � .

Computational cost

The Zak transform requires
�

FFT operations, each requiring � � & � '�� & �
opera-

tions. In addition the vector to matrix decomposition and the matrix transpose both
require � � & � �

operations. This gives a total cost of � � & � � '�� & �
operations.

The inverse operation requires
&

IFFT operations, each requiring � � � � '�� � �
operations. In addition the matrix to vector decomposition and the matrix transpose
both require � � & � �

operations. This gives a total cost of � � & � � '�� � �
opera-

tions.
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Algorithm 4 The inverse Zak transform.

INPUT:
� � &

matrix

	�
.

OUTPUT: Vector � of length
& �

containing the inverse Zak transform of

	�
.

% Transpose matrix.� � �
	� �

% Inverse Fourier transform columns.
for � ��� to

& " � do� ��� � � ��� ������� � � � ��� � � � �
end for

% Decompose the
& � �

matrix into a vector.� � 	 	�
 � � �

3.3.3 The periodization of the elementary function

The implementation of the periodization (2.16) is not possible without truncating
the infinite sum over � , i.e. we have to make � finite. The number of terms nec-
essary depends on the desired accuracy and can either be calculated in advance or
during the iteration. Since the first option requires less computation in addition to
easy implementation we have chosen this one. Since we have restricted us to the
Gaussian elementary function (2.10) and (2.11) the number of terms necessary can
easily be calculated.

We show the calculation for the odd function, but the calculation for the even
function is identical. The ratio between two succeeding terms is given by

� � ���� � � - & � �
� � � ��� � � ��) ��� 	-/ �� � ��� � � ��) ) � � ' 	-/ � 	0/

� � �� � � ' �

Since the lattice parameter
&

is at least 2 the ratio is at least 534. This means
that the terms decrease at least by a factor of 534. Since the maximum value of
the Gaussian function is

� � ���
the third term, � � � - ��& � � , is not more than in the

order of � � ��� . Thus by including the 7 terms from � � � " ��& � � to � � � - ��& � �
we are ensured an accuracy of at least � � ��� .

The implementation can be done easily. We make a
� � & �

matrix
�

contain-
ing the evaluation points � - � & �

, � �
� " �3� 4 4 4 � � � 4 4 4 �	� � and � � � � � 4 4 4 ��& � "��� :
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� �
���������
�

� " ��& � � " ��& � � " ��& � 4 4 4 & � " � " ��& �
� " � & � � " � & � � " � & � 4 4 4 & � " � " � & �
� " & � � " & � � " & � 4 4 4 & � " � " & �
� � � 4 4 4 & � " �� - & � � - & � � - & � 4 4 4 & � " � - & �
� - � & � � - � & � � - � & � 4 4 4 & � " � - � & �
� - ��& � � - ��& � � - ��& � 4 4 4 & � " � - ��& �

����������
�
4

Each column � in the matrix
�

contains the evaluation points
� � " � � - � & �

,
� �

� " �3� 4 4 4 � � � 4 4 4 �	� � . Where the -1 factor is included because the column indexing
starts at 1.

Next calculate the function

� � � � �
���������
�

� � � " ��& � � � � � " ��& � � � � � " ��& � � 4 4 4 � � & � " � " ��& � �� � � " � & � � � � � " � & � � � � � " � & � � 4 4 4 � � & � " � " � & � �� � � " & � � � � � " & � � � � � " & � � 4 4 4 � � & � " � " & � �� � � � � � � � � � � � 4 4 4 � � & � " � �� � � - & � � � � � - & � � � � � - & � � 4 4 4 � � & � " � - & � �� � � - � & � � � � � - � & � � � � � - � & � � 4 4 4 � � & � " � - � & � �� � � - ��& � � � � � - ��& � � � � � - ��& � � 4 4 4 � � & � " � - ��& � �

����������
�
4

The periodization vector (2.16) can then be calculated taking the sum of each col-
umn.

Algorithm 5 The periodization of the elementary function.
INPUT: Lattice parameters

&
and

�
.

OUTPUT: Vector 
�� of length
& �

containing the periodization of the Gaus-
sian elementary function.

% Evaluation points.� � vector(-3*M*N : 4*M*N-1)

%
� � & �

matrix containing the evaluation points.� � &�� ��� � ' 	
� � �

% Evaluate matrix.��� � g[
�

]

% Sum each column.
�� � SUM(
� �

)
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Computational cost

Each of the four stages in the algorithm requires � � & � �
operations, giving a total

cost of � � & � �
operations.

3.3.4 The Gabor transform and its inverse

We now have the necessary algorithms for calculating the Gabor transform (2.19).
Given the input vector � and the lattice parameters

&
and

�
we want to calculate

the Gabor coefficient matrix � . The implementation follows directly from the
method presented in Subsection 2.3.2.

It’s important to note that for a given lattice we only have to calculate the win-
dow function once. This means that the Gabor transform of a set of equally length-
ened vectors can be calculated using the same window function. This reduces the
computational cost considerably.

Algorithm 6 The Gabor transform.
INPUT: Vector � , lattice parameters

&
and

�
.

OUTPUT:
& � �

matrix � containing the Gabor transform of � .

Insert (
& �

-length( � )) zeroes at the end of � making it of length
& �

.

% Use Algorithm 5 to calculate the
& �

periodized elementary function
% of length

& �
.
 � � The periodization of the elementary function

% Use Algorithm 3 to calculate the Zak transform
�� � � �#"2$ � ��& � ,

% � � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the elementary function.��� � � �� � � �#"2$ � ��& �

% Use Algorithm 3 to calculate the Zak transform
���� � �#"2$ � ��& � ,

% � � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the vector � .� � � � ���� � �#"2$ � ��& �

� Use relation (2.24) to calculate the 2d Fourier transform
���� � �#"2$ � ��& � ,

% � � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the coefficients.

��� � � � � � 4 � ��� �
� Use Algorithm 2 to calculate the 2d inverse Fourier transform
% of ��� � .
��� The 2d inverse Fourier transform of ��� �

The inverse operation takes the Gabor coefficient matrix � and calculates the
vector � . The implementation follows directly from the method presented in Sub-
section 2.3.3.
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Algorithm 7 The inverse Gabor transform.
INPUT:

& � �
matrix � containing the Gabor transform of � .

OUTPUT: Vector � .

% Find the lattice parameters M and N from the dimensions of � .& � " � � � � 
 � � ��� � � � �� � " � � � � 
 � � � � � � � �
% Use Algorithm 5 to calculate the

& �
periodized elementary function % of

length
& �

.
 � � The periodization of the elementary function

% Use Algorithm 3 to calculate the Zak transform
�� � � �#"2$ � ��& � ,

% � � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the periodized elementary

% function.��� � � �� � � �#"2$ � ��& �
� Use Algorithm 1 to calculate the 2d Fourier transform

��1� � �#"2$ � ��& � ,
% � � � � � 4 4 4 � � " ��� and

"
�
� � � 4 4 4 ��& " ��� , of the coefficient matrix.

��� � � ���� � �#"2$ � ��& �
% Use the relation (2.25) to calculate the Zak transform

���� � �#"2$ � ��& � ,
% � � � � � 4 4 4 � � " ��� and

"
�
� � � 4 4 4 ��& " ��� , of the vector � .� � � � � � � .*

��� �
� Use Algorithm 4 to calculate the inverse Zak transform of

� � � .� � The inverse Zak transform of
� � �
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Computational cost

For the Gabor transform the periodization of the elementary function requires
� � & � �

operations. The Zak transform of the periodized elementary function
and the Zak transform of the vector both require � � & ��� '��0& �

operations. The
element-by-element division requires � � & � �

operations and the 2d inverse Fourier
transform requires � � & ��� '�� � � ��� � & � � � � � operations. This gives a total cost of
� � & � � '�� � � ��� � & � � � � � operations.

Likewise for the inverse Gabor transform the periodization of the elemen-
tary function requires � � & � �

operations and the Zak transform of it requires
� � & � � '��-& �

operations. The 2d Fourier transform of the coefficient matrix
requires � � & � � '�� � ����� � &�� � � � � operations and the element-by-element multi-
plication requires � � & � �

operations. Finally the inverse Zak transform requires
� � & � � '�� � �

operations, giving a total cost of
� � & � � '�� � � ��� � & � � � � � operations.

3.4 Oversampled Gabor representation

In this section we extend the algorithms presented in the last section to handle
integer oversampling. The algorithms are all based on the mathematical techniques
presented in Section 2.4.

In the critical sampled case we could easily calculate the Zak transform of the
window function as the reciprocal of the Zak transform of the elementary function
(2.21). As explained in Subsection 2.4.3 this is not possible in the oversampled
case. Instead we have to use relation (2.37) to calculate the Zak transform of the
window function.

We start this section presenting an algorithm for rotating a vector left. This
will help us implementing an efficient algorithm for the Zak transform of the el-
ementary function, which we present next. Then an algorithm for calculating the
Zak transform of the window function is presented, and finally algorithms for the
oversampled Gabor transform and its inverse are presented.

3.4.1 Left rotation of a vector

Given the vector � � � � � � � � � 4 4 4 � � 	 ��� � we implement an algorithm left rotating
the vector � places into the vector ��� � � ��� � ��� � � � 4 4 4 � � 	 ��� � � � � 4 4 4 � ��� ��� � 4

The implementation is straight forward, moving the � first elements to the end
of the sequence.

Computational cost

We have to move every element in the vector, giving a total cost of � � � � opera-
tions, where

�
is the number of elements in the vector.
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Algorithm 8 Left rotation of a vector.
INPUT: Input vector � , rotation � .
OUTPUT: Rotated vector � � .
��� � � � � � - � � � " � � � � 
 � � ���� � � ��� � � � � � ��� , � � � � � ���

3.4.2 The Zak transform of the elementary function

In the oversampled case we need to calculate
�� � � �#"2$ � ��& � , � � � � � 4 4 4 � � " ���

and
"
�

� � � 4 4 4 ��& " ��� , where
� � � � and � is the oversampling factor. That

is, whereas we in the critically sampled case calculated the Zak transform of the
periodized elementary function � � � � � , � � � � � � 4 4 4 ��& � " ��� , of length

& �
,

we in the oversampled case have to calculate the Zak transform of the periodized
elementary function � � � � � , � � � � � � 4 4 4 ��& � " ��� , of length

& �
. Since we use

the same lattice parameters,
&

and
�

, we can not use Algorithm 3 directly. We
have to split � � � � � into � functions of length

& �
, Zak transform each part and

then combine them again.
The key observation is that the calculation of the Zak transform

�� � � �#"2$ � ��& �
can be divided into � intervals. The first interval is when � � � � � 4 4 4 � � " ��� . In
this interval we use function values � � � � � , where � � � � � � 4 4 4 ��& � " ��� . This
is a vector of length

& �
and thus we can use Algorithm 3 to calculate the Zak

transform of it. In the next interval, when � � � � � 4 4 4 � � � " ��� , we use function
values � � � � � , where � � � � � � 4 4 4 � � � & - � � " ��� . This is also a vector of length& �

and we can use Algorithm 3 to calculate the Zak transform of it. Generally
we have that in interval � , � � � � � 4 4 4 � � " ��� , where � � � � � � � 4 4 4 � � � - � � � " ��� we
use function values � � � � � , where � � � � � � � � 4 4 4 � � � & - � � " ��� . This is a vector
of length

& �
, and Algorithm 3 can be used for calculating the Zak transform of

it.
When we have calculated the Zak transform

���� � from each interval � � � �� � � 4 4 4 � � " ��� , we combine them into the � � � block matrix

��� � �
����
�
��� � �
� �� �

...
� � � �� �

�����
� 4

The resulting
� � &

matrix is the Zak transform of periodized elementary func-
tion � � ��� of length

& �
. Since we only have available the method presented in

Subsection 3.2 we have to combine them in the following equivalent way

��� � � � � ��� � � � � � � �� � � � 4 4 4 � � � � �� � � �  � 4
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Another important observation is that even though � � � � � is of length
� &

it is
still

& �
periodic, meaning that � � � � � � � � � � - & � � and on the form � � ��� �� � � � 4 4 4 � � ' 	 ���� ��� ��

� � � � 4 4 4 � � ' 	 ���� ��� ��
� 4 4 4 � � � � 4 4 4 � � ' 	 ���� ��� �� ��� � . Because of this the vector used

in interval � , 
 � � � � � 	 � 4 4 4 � � ' 	 ��� � � � � 4 4 4 � � � 	 ��� � , is a � � � places left rotation of
the vector 
 � � � � � � 4 4 4 � � ' 	 ��� � , used in the first interval. For example the vector
used in the second interval, 
 � � � �

	
� 4 4 4 � �

' 	 ��� � � � � 4 4 4 � � 	 ��� � , is a 5 places left
rotation of the vector used in the first interval.

Thus by starting with the vector 
 � � � � � � � � � 4 4 4 � � ' 	 ��� � and alternating
between taking the Zak transform and rotating

�
places left, we can calculate the

Zak transform of the periodized elementary function in an elegant way.

Algorithm 9 The Zak transform of the periodized elementary function.
INPUT: Lattice parameters

&
and

�
, oversampling factor � .

OUTPUT:
� � &

matrix
� � � containing the Zak transform of the

& �
peri-

odized elementary function of length
& �

.

% Use Algorithm 5 to calculate the
& �

periodized elementary function
% of length

& �
.
 � � The periodized elementary function

% Use Algorithm 3 to calculate the Zak transform
�� � � � �#"2$ � ��& � ,

% � � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of 
�� . Transpose the result.��� � � �� � � � �#"2$ � ��& �� � � � � � � � � �

for � � � to � " � do
% Use Algorithm 8 to rotate 
 � � � � places left.
 � � Rotate 
�� � � � places left

% Use Algorithm 3 to calculate the Zak transform
�� � � � �#"2$ � ��& � ,

% � � � � � 4 4 4 � � " ��� " � � � � 4 4 4 ��& " ��� , of 
�� .� � � � � �� � � � �#"2$ � ��& �
% Append

� � � � to the end of
� � � .

��� � � ��� � � � � � � � � ,(
� � � � � � �

end for

% The final transpose.��� � � � ��� � � �
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Computational cost

The periodization of the elementary function requires � � & � �
operations. The

following Zak transform requires � � & ��� '��0& �
operations and the matrix trans-

pose requires � � & � �
operations. Inside the loop, which is repeated � " � times,

we have tree operations. The rotation, which requires � � & � �
operations. The

following Zak transform, which requires � � & � � '��0& �
operations and the final

appending, which requires � � & � �
operations. Since � � � � &

this gives a total
cost of � � � � � '��0& �

operations.

3.4.3 The Zak transform of the window function

Having the Zak transform of the periodized elementary function we use the mathe-
matical techniques presented in Subsection 2.4.3 to calculate the Zak transform of
the window function. For each � � � � � 4 4 4 � � " ��� and

"
�

� � � 4 4 4 ��& � � " ��� we
set up the vector (2.32) and use relation (2.37) to calculate the Zak transform of the
window function.

Algorithm 10 The Zak transform of the window function.
INPUT:

� � &
matrix

� � � containing the Zak transform of 
 � .
OUTPUT:

� � &
matrix

� � � containing the Zak transform of the window
function.

% Find the lattice parameters K and M from the dimension of
� � � .

� � " � � � � 
 � ��� � ��� � � � �& � " � � � � 
 � ��� � � � � � � �
for � � � to

�
do

for
".� � to

& � � do

% Set up the vector (2.32).� � ��� � � � �#" � � & � � � � & �
% Use (2.37) to calculate the Zak transform of the window function.

�
� � �#" � � & � � � � & � � � � � � � � � � � � ��� � � � ��� �

end for
end for

Computational cost

Inside the nested loop, which is repeated
� � & � � � & �

times, we have two
operations. The set up of the vector which requires � � � � � �

operations. The
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calculation of relation (2.37) which also uses � � � � � �
operations. This gives a

total cost of � � & � �
operations.

3.4.4 The oversampled Gabor transform and its inverse

Given the input vector � , the oversampling factor � and the lattice parameters
&

and
�

we want to calculate the oversampled Gabor transform of � . The imple-
mentation follows directly from the method presented in Subsection 2.4.1.

Algorithm 11 The oversampled Gabor transform.
INPUT: Vector � , oversampling factor � , lattice parameters

&
and

�
.

OUTPUT:
& � �

matrix ��� � containing the Gabor transform of � .

� � � � �
Insert (

& �
-length( � )) zeroes at the end of � making it of length

& �

% Use Algorithm 9 to calculate the Zak transform
�� � � �#"2$ � ��& � ,

% � � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the elementary function.��� � � �� � � �#"2$ � ��& �

% Use Algorithm 10 to calculate the Zak transform
�� � � �#"2$ � ��& � ,

% � � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� , of the window function.

� � � � �� � � �#"2$ � ��& �
% Use Algorithm 3 to calculate the Zak transform

���� � �#"2$ � ��& � � � ,
% � � � � � 4 4 4 � � " ��� and

"
�
� � � 4 4 4 ��& � � " ��� , of the signal � .� � � � � ��� � �#"2$ � ��& � � �

% Replicate the matrix into a � � � block matrix to calculate the Zak
% transform

���� � �#"2$ � ��& � � � , � � � � � 4 4 4 � � " ��� and
"
�
� � � 4 4 4 ��& " ��� ,

% of the signal � .� � � � � � �.6 � �(� � � � � � � � � �
� Use relation (2.30) to calculate the 2d Fourier transform

���� � �#"2$ � ��& � ,
% � � � � � 4 4 4 � � " ��� and

"
�
� � � 4 4 4 ��& " ��� , of the coefficients.

��� � � � � � � � 4 � � � �

� Use Algorithm 2 to calculate the 2d inverse Fourier transform
% of ��� � .
��� � � The 2d inverse Fourier transform of ��� �

The inverse operation takes the coefficient matrix ��� � and calculates the vec-
tor � . The implementation follows directly from the method presented in Subsec-
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tion 2.4.2.

Algorithm 12 The inverse Gabor transform.
INPUT:

& � �
matrix � � � containing the Gabor transform of � .

OUTPUT: Vector � .

% Find the lattice parameters
&

and
�

from the dimension of � � � .& � " � � � � 
 � ��� � ��� � � � �
� � " � � � � 
 � ��� � � � � � � �
% Use Algorithm 9 to calculate The Zak transform

�� � � �#"%$ � ��& � ,
% � � � � � 4 4 4 � � " ��� and

"
�
� � � 4 4 4 ��& " ��� , of the elementary function.� � � � �� � � �#"%$ � ��& �

% Use Algorithm 1 to calculate The 2d Fourier transform ��� � �#"2$ � ��& � ,
% � � � � � 4 4 4 � � " ��� and

"
�
� � � 4 4 4 ��& " ��� , of ��� � .

� � � � �1� � �#"2$ � ��& �
% Use relation (2.31) to calculate The Zak transform,

���� � �#"2$ � ��& � � �
% � � � � � 4 4 4 � � " ��� and

"
�
� � � 4 4 4 ��& � � " ��� of the vector � ." � & � �� � � � � � & � � matrix containing zeroes

for �
���

to � " � do� � � � � � � - � � � � � � � � " - � � � � � � - � � � " �$4 � � � � � � � � � " - � � � � � � - � � � " �
end for� � � � � � � � � � �
% Use Algorithm 4 to calculate the inverse Zak transform of

� � � .� � The inverse Zak transform of
� � �

Computational cost

For the Gabor transform the Zak transform of the elementary function requires
� � � � � '��-& �

operations and the Zak transform of the window function requires
� � & � �

operations. The Zak transform of the input vector requires � � & � �
op-

erations and the replication requires � � & � �
operations. The element-by-element

multiplication requires � � & � �
operations and the 2d inverse Fourier transform

requires � � & ��� '�� � � ��� � & � � � � � operations. This gives a total cost of � � & � � '�� � ����� � &�� � � � �
operations.

Likewise for the inverse Gabor transform the Zak transform of the elementary
function requires � � � � � '�� & �

operations. The 2d Fourier transform of the coef-
ficient matrix requires � � & � � '�� � ����� � &�� � � � � operations. Inside the for loop,
which is repeated � times, we have the element-by-element multiplication which
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requires � � & � �
operations. This gives a total cost of � � & � �

operations for the
loop. The final inverse Zak transform requires � � & � � '�� � �

operations, giving a
total cost of � � & ��� '�� � ����� � &�� � � � � operations.
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Chapter 4

Denoising by thresholding

During the 90’s there have been considerably interest in the use of wavelet trans-
forms for the removal of noise from signals and images. The most employed
method has been the “WaveShrink” developed by Donoho and Johnstone [10] [12]
[13]. This method uses a transform-based thresholding, working in three steps:

� Transform the noisy data into the wavelet domain, i.e. time-scale domain.

� Shrink the resulting coefficients, thereby suppressing those coefficients con-
taining noise.

� Transform back into the original domain.

The method is used for denoising a wide class of signals corrupted by additive
white Gaussian noise. It has been successfully applied to 1D and 2D data such as
NMR spectra and geophysical data.

In this chapter we develop a denoising method using the Gabor transform in-
stead of the wavelet transform, i.e. instead of transforming the noisy signal into
the time-scale domain we use the time-frequency domain. This method is called
“GaborShrink” and numerical tests we have done show that for some signals this
method performs better than the “WaveShrink” method.

The implementation of the “GaborShrink” is done in Matlab from MathWorks.

4.1 Introduction

Suppose we are given a signal � � � � � � 4 4 4 � � 	 ��� � generated from

� � � � � -���� � � � ��� � 4 4 4 � � " � � (4.1)

where � � � � ��� � � . The
� � ’s are independently distributed Gaussian random vari-

ables with zero mean and variance one, and
�

is a known noise level. The
� � ’s are

also referred to as white noise. Our goal is to denoise the signal � , i.e. to find a
good estimate

��
of the underlying signal

� � � � ��� � �$� 4 4 4 � � ��� 	 ��� � � . The hat on top

51
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of a variable is the notation throughout this chapter to indicate the estimate of the
corresponding variable.

The noise signal � can be represented by a linear combination of Gabor ele-
mentary functions � �3 � , i.e.

��� ��� � ' ���
� ���

� ���
� ��� �(�! 

� � �! � � ���
Since the energy in white noise is uniformly distributed in the frequency domain
it will be reasonable to assume that the noise energy also is uniformly distributed
among the Gabor coefficients � �! � . If in addition the noise energy is small com-
pared to the signal energy, the magnitude of the noise coefficients will be at a lower
level than the magnitude of the signal coefficients. Thus thresholding the coeffi-
cients with a well chosen threshold gives a good estimate

��
of the the underlying

signal
�
, i.e.

�
��� ��� � ' ���

� ���
� ���
� ��� �

��3 � � �3 � � ��� �
where � ��3 � are the thresholded coefficients.

When thresholding our goal is to minimize the Mean Square Error

� � � � �� � � �� 	 ���
� ��� 	

� �� � "�� � � � � (4.2)

also known as the � � -RISK. Since we do not know
�
, this is not a trivial task.

For measuring the “strength” of the noise in (4.1) we use the signal-to-noise
ratio defined by

� � � � � � � � � �
�

�
where SD is the standard deviation.

4.2 Thresholding

There are several ways of performing thresholding, we use the two most common
methods, namely hard thresholding and soft thresholding.

4.2.1 Hard thresholding

When hard thresholding a function � ����� the function values with an absolute value
below or equal to the threshold level

�
is replaced by

�
, see Figure 4.1. The output����� ��� is

����� ��� �
	 � ����� � � ������� � �
� � � ������� � � (4.3)
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Figure 4.1: Hard thresholding the function � ����� .

4.2.2 Soft thresholding

When soft thresholding a function � ����� the function values with an absolute value
below or equal to the threshold level

�
is replaced by

�
, and the function values

with an absolute value above the threshold level are shrunk with
�
, see Figure 4.2.

The output ��� ��� � is

��� ��� � � 	 sign
� � �������(� � � ������� " � � � � ������� � �

� � � ������� � � (4.4)

Figure 4.2: Soft thresholding the function � ����� .
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4.2.3 Thresholding Gabor coefficients

In our case the function values � ����� in (4.3) and (4.4) are the Gabor coefficients
���3 � . However, there is one problem, the coefficients are complex valued. Thus
there are two ways of performing the thresholding. We can either threshold the
real coefficients and the imaginary coefficients separately, or we can threshold the
absolute values of the complex coefficients. Numerical tests we have done show
that we achieve the best results thresholding the absolute values of the complex co-
efficients. The reason for this is probably that thresholding the real and imaginary
coefficients separately alters the phase of the complex coefficients, and this again
results in extra noise when the coefficients are transformed back into the time do-
main. Thus unless specified otherwise we use the absolute values of the complex
coefficients for thresholding.

4.2.4 Example

Before we continue to the difficult task, namely selecting the threshold level
�
,

we present an example. The example is meant for motivation and illustrates the
potential of the method.

We take a test signal, add white Gaussian noise and then try to use hard thresh-
olding to reduce the noise. The test signal consists of two damped sinusoids with
frequencies 200 Hz and 400 Hz:

� � ��� � � ��� ��� ��� � � � )�/102� ��� � � � � � � � � ���.-)�/10.� ��� � � � � � � � � ����� �
where � � � � � 4 4 4 � � � � � and � � � 1ms, yielding a sampling frequency of 1kHz.
The constant

�
is the signal level. Figure 4.3 shows the frequency response of the

test signal.
We now add white Gaussian noise with mean zero and standard deviation one.

The signal level
�

is chosen so that the signal-to-noise ratio is one. Figure 4.4 shows
the frequency response of the signal. We clearly see the noise, which is uniformly
distributed in the frequency domain.

We then transform the noisy signal into the time-frequency domain, see the up-
per part of Figure 4.5. From the figure we see the signal components and the noise,
which is uniformly distributed in the time-frequency domain. For a comparison
we have added the time-frequency plot of the noise free signal in the lower part of
Figure 4.5.

What we will do is to use hard thresholding to remove the noise coefficients.
This is possible because the majority of the signal components are larger than the
noise coefficients. Since we have available the noise free signal we can find the
optimal threshold value from the � � -RISK (4.2). Plotting the � � -RISK for different
thresholding levels, see Figure 4.6, we find that

� ��� 4 �
is the optimal threshold

value.
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Figure 4.3: Frequency response of the test signal � � 4
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Figure 4.4: Frequency response of the noisy signal.
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Figure 4.5: Upper: Time-frequency plot of the noisy signal. Lower: Time-
frequency plot of the noise free signal.
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Figure 4.6: � � -RISK versus threshold level.
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Thresholding the coefficients at this level we get the time-frequency plot in
Figure 4.7. The noise coefficients are removed, but we have also lost the small-
est signal coefficients. This is not possible to avoid since these coefficients were
“drowned” in the noise. However, the majority of the signal components still re-
mains. Using the inverse transform on these coefficients we get the most optimal
denoised signal using hard thresholding. Figure 4.8 shows the frequency response
of the denoised signal. From the figure we see that the majority of the noise is
removed.
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Figure 4.7: Time-frequency plot after the coefficients have been hard thresholded.
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Figure 4.8: Frequency response of the optimal denoised signal.
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4.3 Selecting the threshold

The central issue in a threshold procedure is the selection of an appropriate thresh-
old. If this threshold is too small, the result is still noisy. On the other hand, a large
threshold also removes signal coefficients. It is intuitively clear that higher noise
level requires higher threshold. We distinguish between local threshold, which
compute one threshold for a group of coefficients, and global threshold which com-
pute one threshold for all the coefficients. In addition we classify the procedure as
data-driven if the threshold selection also depends on the input signal.

We investigate two methods. The first one, which we have developed ourselves,
is global and uses the statistical properties of the noise for selecting the threshold.
The second one uses Steins unbiased RISK estimate. This method is global and
data-driven.

4.3.1 Statistical method

The noise is assumed to be white, i.e. uniformly distributed in the frequency do-
main. This can be modeled using normal distributed random variables. The density
function of the normal distributed random variable is

��� � � �	� �
� ��� � � �������
	��

��� � �

where � is the mean and
�

is the standard deviation. The normal distribution is
denoted

� �
�
� � �

and its graph, called the normal curve, is the bell-shaped curve of
Figure 4.9. The normal distribution is often referred to as Gaussian distribution, in
honor of Karl Friedrich Gauss (1777-1855). The particular normal distribution that
has a mean of 0 and a standard deviation of 1 is called the standard normal distri-
bution, and is denoted

� ��� � � � . For modeling white noise we use scaled standard
normal distributed random variables.
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Figure 4.9: The normal distribution with mean � and standard deviation
�

.

The idea behind the method is fairly simple. We want to find the level where we
statistically erase a given percentage of the noise coefficients. To do this we have
to examine the standard normal distribution and how the noise energy is distributed
in the time-frequency domain.

The curve of any continuous probability distribution is constructed such that
the area under the curve bounded by two ordinates � � � � and � � � � equals
the probability that the random variable

�
assumes a value between � � � � and� � � � . Thus for the standard normal distribution the probability that the value of

the random variable is between � � � � and � � � � � " � � is given by

� � � � �  � � � � � 
�� �� � � � � � � � � �
� ��� 
�� ��

� � � �� � � � �
� � � � � � � � � �$� (4.5)

where
�
� � � � � � is the error function.

Since we are interested in finding the level where a given percentage of the
noise coefficients are below we need the inverse relation of (4.5), i.e. given a
probability � we want to find the ordinate � � � � . Using the inverse error function
this can be found using the relation

� � � � � � � � � � � � � � �$4 (4.6)

For example for a probability � � � 4 � � the ordinate is � � � � 4 � � . This means that
for a series of uncorrelated random variables (white noise) approximately

� � � of
them have an absolute value smaller than � 4 � � , see Figure 4.10. The calculation of
the � � � � � � � � � function has to be done numerically.

If the random variable
�

does not have a standard normal distribution, but has
zero mean and standard deviation

�
, we have to scale (4.6) by

�
. This gives the

following important fact that we will use later:
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Figure 4.10: One hundred uncorrelated normal distributed random variables. Sta-
tistically

� � � of them have an absolute value smaller than � 4 � �
� For a series of uncorrelated random variables with zero mean and standard

deviation
�

statistically � � � � � � of them will be smaller than the level
�
�

defined by �
�
� � � � � � � � � � � � � � �$4 (4.7)

Next we have to examine how the noise energy is distributed in the time-
frequency domain. Since the Gabor transform is not an orthogonal transform this
is not a trivial task. It is hard to derive exact equations for the relation between
the energy in the time domain and the energy in the time-frequency domain. We
instead formulate approximations, which are enough accurate for our usage.

Since the energy in white noise is uniformly distributed in the frequency do-
main it will be reasonable to assume that the energy is almost equally distributed
among the frequency bands. There are

�
frequency bands, where frequency band

� is defined by

�
�
� � � �  � � � �  � � 4 4 4 � � ' ���  � � � � � � � � 4 4 4 � � " ��� �

and the coefficients � �! � is defined by (2.28).
Numerical tests shows that, with a small error, the assumption that the energy

is equally distributed among the frequency bands is true. In fact, if we have the
white noise signal

� � � � � �4� ��� � � �$�
and transform the signal into the time-frequency domain, we have the following
relation
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� � � � � � ��� � � � �
�
� � � � � � � � 4 4 4 � � " ��� 4 (4.8)

This means that the norm of each frequency band is approximately the norm of the
white noise divided by

�
.

The energy in frequency band
�
� is defined by

����� � � � �
�
� � �� 4

Using this and (4.8) we have the following relation

� � � � � � �� � � � ����� � � � � � 4 4 4 � � " ��� � (4.9)

meaning that the energy in each frequency band is approximately the energy in the
white noise divided by

� �
.

From (4.9) we can draw the two following important relations:

� When the number of frequency bands are increased by a factor of two, the
energy in each frequency band,

�����
, is decreased by a factor of four.

� When the number of time steps are increased by any factor, the energy in
each frequency band,

�����
, remains the same.

We have to point out one more fact about the energy in each frequency band.
Since the Gabor coefficients are complex the energy is divided between the real co-
efficients and the imaginary coefficients. In fact, approximately half of the energy
is in the real coefficients and the other half is in the imaginary coefficients. Defin-
ing

�	���� as the energy in real coefficients and
��
��� as the energy in the imaginary

coefficients we have the relation

� ���� �
� 
��� �

�� ����� � � � � � � � ��� � � 4 (4.10)

It should be mentioned that this is not true for every frequency band. Because of the
circularity of the complex exponential function we have � frequency bands, where� is the oversampling factor, which only consists of real coefficients. However, the
error in the final calculated threshold level made by assuming that every frequency
band contains complex coefficients is very small. Thus we assume that (4.10) holds
for every frequency band.

Next we have to examine the relation between the noise level of the white
noise,

�
, and the noise level of transformed white noise. We have from statistics

(see [29] sentence 10.5) that when
� � � 4 4 4 � � 	 ��� are independent random variables

with mean � and standard deviation
�

the summation

�
� � 	

���
�����

� � � " �
� �
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is a chi-squared distribution or � � distribution with
�

degrees of freedom. Thus if
the random variables have zero mean we have that

�
� � 	

���
�����
� �� (4.11)

is a � � distribution with
�

degrees of freedom. In addition we have that (see [29]
eq. 10.5) if a random variable � has a � � distribution with � degrees of freedom
the expected value of � is

	 � � �	� � 4 (4.12)

Using (4.12) and the fact that (4.11) is a � � distribution we have that

	 ���� � 	 ���
�����
� �� � � � �

or
� � � 	 ��� 	 ���� � � � �

�
�

� 4
The summation of the squared random variables is the energy of the random vari-
ables. Using this and (4.10) we can find the variance of the real coefficients in each
frequency band as

� �� � 	 � � ���� �& ����� ��� ��� ��� � �& �
where

&
is the number of real coefficients in each frequency band. The energy in

the noise signal
� � � � � � �� can equally be written as

� � � � � � �� � & � � �� �
where

& �
is the length of the noise signal. Using this we get

� �� � ' 	
	 ��� � �& � � � ��� � � 4
Taking the square root of both sides we get the standard deviation of the the real
coefficients in each frequency band

� � ��� � � � ��
4

Since the energy is equally divided between the real and imaginary coefficients
we have that standard deviation of the imaginary coefficients equals the standard
deviation of the real coefficients, thus

� � � � 
 � � � � � ��
4

(4.13)
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If we now combine (4.7) and (4.13) we have that approximately � � � � � � of
the absolute values of the real coefficients and � � � � � � of the absolute values of
the imaginary coefficients are smaller than the level

� � � defined by

� � � � � � � �
�

� � � � � � � � � �$4 (4.14)

As explained in Section 4.2.3, the most optimal result is achieved when using
the absolute values of the complex coefficients for the thresholding. Using (4.14)
we have that approximately � � � � � � of the absolute values of the coefficients are
smaller than � � ��� � �� � - � �� � � � � � � � � � � � �

�
� � � � � � � � � � � �$4 (4.15)

This is the relation we have been seeking. Using (4.15) we can find an ap-
propriate threshold level for the coefficients. Numerical tests we have done show
that we achieve the best results by choosing � � � 4 � � for hard thresholding and� ��� 4 � � for soft thresholding. This gives the following threshold levels:

Hard thresholding

� � � ��� � � � � �
�

� � � � � � � � � ��� 4 � � � � � 4 � � � � � � �
�
� � (4.16)

Soft thresholding

� � ��� � � � � � �
�

� � � � � � � � � ��� 4 � � � � � 4 � � � � � � �
�
� � (4.17)

4.3.2 Threshold selection by SURE

A well known threshold selector used in wavelet denoising is Steins unbiased RISK
estimator, also known as SURE. In this section we try to adapt this method to
Gabor denoising. For an estimator to be unbiased it requires that on the average
the estimates will yield the true value.

Given a signal � � � � � � 4 4 4 � � 	 ��� � generated from

� � � � � -���� � � � ��� � 4 4 4 � � " � �
where � � � � ��� � � . The

� � ’s are independently distributed Gaussian random
variables with zero mean and variance one and

�
is a known noise level. Let�� � � �� � � 4 4 4 � �� 	 � be an estimator of

� � � � � � 4 4 4 � � 	 ��� � . Introduce the mean
squared risk of

��
:

� � 	 ���
����� 	

� �� � "�� � � � 4
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Assume that the estimators
�
� � have the form

�
� � � � � -����+� � � �$�

where
�

is a threshold level and
����� � �

is a weakly differentiable real valued func-
tion for any fixed

�
.

Since the true parameters � � are unknown we can not calculate
�

explicitly.
Charles Stein [22] introduced a method for estimating the risk unbiased. Stein
showed that when

���+� � �
is weakly differentiable, then

� � � � � � � ����� � 	 ���
�����

� � - � � � �� � ��� � � � ��� � � ���
-�� �� � � � �$4 (4.18)

This is known as Steins unbiased risk estimate (SURE). The Stein principle is to
minimize (4.18) with respect to

�
and take the minimizer as a data driven estimator

of the optimal
�
, i.e.

����
�
/10�
	 � � � � � � ��� �$4

It was our intention to use Steins unbiased risk estimate for both hard and soft
thresholding, however, the hard threshold function is not continuous, and therefore
it does not have a bounded weak derivative in Steins sense [16]. Thus the SURE
procedure for hard thresholding is not valid and we can only apply the SURE pro-
cedure for the soft thresholding.

Soft thresholding

For soft thresholding the threshold function
����� � � � must be " � � when

� � � �  �
," � when � � � �

and
�

when � � � �
, see Figure 4.11, this gives the function

��� � � � �	� " � � � � � � � �  � � " � � � � � � � � ���
sign

� � � �$�
where

�
� � � � �  ���	� 	 � � � � �  �

�
else

and

sign
� � � � �
	 � � � � �� � � � � 4

The derivative of
���+� � � � is�� � ����� � � ��� � � ���

� " � � � � �  ���$�



4.3. SELECTING THE THRESHOLD 65

Figure 4.11: Soft thresholding.

which gives the SURE function

� � � � � � ����� � 	 ���
�����

� � " � � � � � � � � �  � � - � � � � � � � � � ���2- � �� � � � � � �  � �
� 	 ���

�����
� � -&� � �� " � � � � � � � � � �  ���2- � � � � � � � � � ���

� 	 ���
�����

� � �� " � � � � � � � � �� � � -&� � � - � � � � � � � � � � ���

Minimizing this function with respect to
�

yields the estimate of the optimal
�

for
soft thresholding.

Thresholding Gabor coefficients

As mentioned in Section 4.2.3 we achieve the best result when thresholding the
absolute values of the complex coefficients. However, the SURE-function requires
the noise to be Gaussian distributed with zero mean, something the absolute values
of the complex coefficients do not fulfill. Thus to use Steins principle we have to
threshold the real coefficients and imaginary coefficients separately. This works
because separately the noise in the real and imaginary coefficients are Gaussian
distributed with zero mean and variance

�
given by (4.13).

This gives the following threshold levels:
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Soft thresholding

Real coefficients:

� �
� ��� � � �

/10�
	 � '
���

� ���
� ���
� ���

� � � � � � "�� ���3 � ��� � " � �  � � � � � � "�� ���3 � ���  ���
- � � � - � � � � � � � � � "�� ���3 � ��� � ��� �
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4.3.3 Unknown noise level

What if the noise level is unknown? It is possible to estimate the noise level from
the median of the coefficients in the highest frequency bands. We have done a few
numerical tests with good results, however, more research is needed.

4.4 Simulation experiments

In this section we run simulation experiments to investigate the performance of the
methods we have discussed. For the experiments we use six functions often used
for testing wavelet denoising. The six functions are due to Donoho and Johnstone
[11]: Bumps, HeaviSine, Doppler, Blocks, Quadchirp and Mishmash. The func-
tions are normalized such that their standard deviation equals 7, and sampled with
four different sample sizes. For each signal and sample size we add 100 different
white noise signals

� ��� � � � . This gives 100 test signals, with a signal-to-noise ratio
of 7, for each signal and sample size. These test signals are denoised and (4.2) is
used to calculate the Mean Square Error for each test signal. The frequency res-
olution

&
is set 16 and double oversampling is used. For the denoising we test

both hard and soft thresholding. For hard thresholding the statistical method is
used for estimating the threshold levels, and for soft thresholding both the statis-
tical method and the SURE method are used for estimating the threshold levels.
For both hard and soft thresholding the Mean Square Error for each test signal is
compared against the optimal Mean Square Error, which is the Mean Square Error
achieved using the optimal threshold level. This is possible to calculate since we
have the noise free signals. It is important to be aware of that when speaking of the
optimal Mean Square Error we do not mean the most optimal Mean Square Error
we can achieve using Gabor denoising. It is only the most optimal Mean Square
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Error for the given resolution when hard and soft thresholding are used, and all co-
efficients are thresholded using the same level. There exists other techniques like
Garrote shrinkage [5], Firm shrinkage [17] and cycle spinning [8]. These methods
should be tested in further work.

4.4.1 Bumps

The Bumps function is defined by the equation

� ����� � � �
� ���


 � � ����� " � � � � � � �$� � �����	� � � - � ��� � � ��� 4
� � � �*4 � � 4 � �3� 4 � � � 4 � �3� 4 � � � 4 � � � 4 � � � 4 � � � 4 � � � 4 � � � 4 � � � �
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The Bumps function is normalized such that the standard deviation equals 7,
and sampled with four different sample sizes, namely

� � � � � � , � � � � � � ,� � � � � � � and
� � � � � � � , see Figure 4.12. For each sampled signal we add 100

different white noise signals
� ��� � � � , resulting in 100 test signals for each sample

size, see Figure 4.13. For each sample size we denoise each of the 100 test signals
as explained in the beginning of this section.

The Mean Square Errors for the denoised test signals using hard thresholding
are plotted in Figure 4.14 and the Mean Square errors for the denoised test signals
using soft thresholding are plotted in Figure 4.15. The average Mean Square Errors
for the hard thresholding are presented in Table 4.1 and the average Mean Square
Errors for the soft thresholding are presented in Table 4.2.

From Figure 4.14 and Figure 4.15 we see that the statistical method performs
very well. For hard thresholding the Mean Square Errors are almost identical to the
optimal Mean Square Errors. The results for soft thresholding are also good, but the
Mean Square Errors differs a little more for

� � � � � � � . The SURE method also
performs well, but except for

� � � � � � � the statistical method performs better.
Comparing Table 4.1 and Table 4.2 we see that the results for hard thresholding
are better than the one for soft thresholding. Thus we achieve the best results using
hard thresholding, and estimating the thresholds levels with the statistical method.
In Figure 4.16 we have plotted the denoised signals using hard thresholding and
the statistical method for estimating the threshold levels.
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Figure 4.12: The Bumps function with sample size
� � � � � � , � � � � � � , � � �� � � �

and
� � � � � � � .
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Figure 4.13: The Bumps function with sample size
� � � � � � , � � � � � � , � � �� � � �

and
� � � � � � � , and added white noise

� ��� � � � . In the simulation 100
different white noise signals are used for each sample size.
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Figure 4.14: The Mean Square Errors using hard thresholding on the noisy Bumps
signals. We have used four different sample sizes, and the Mean Square Errors for
the statistical method are plotted against the optimal Mean Square Errors.

Sample size Optimal MSE Statistical method� � � � � � 0.59 0.65� � � � � � 0.30 0.31� � � � � � � 0.11 0.11� � � � � � � 0.037 0.042

Table 4.1: The average Mean Square Errors using hard thresholding on the noisy
Bumps signals.
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Figure 4.15: The Mean Square Errors using soft thresholding on the noisy Bumps
signals. We have used four different sample sizes, and the Mean Square Errors for
the statistical method and the SURE method are plotted against the optimal Mean
Square Errors.

Sample size Optimal MSE Statistical method SURE method� � � � � � 0.71 0.87 1.1� � � � � � 0.37 0.38 0.46� � � � � � � 0.15 0.16 0.18� � � � � � � 0.061 0.086 0.077

Table 4.2: The average Mean Square Errors using soft thresholding on the noisy
Bumps signals.
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Figure 4.16: The denoised Bumps signals using hard thresholding and estimating
the threshold levels using the statistical method.

4.4.2 HeaviSine

The Heavisine function is defined by the equation

� ����� � � )�/102� � � ��� " sign
��� " 4 �*� " sign

� 4 � � " ���$4
The HeaviSine function is normalized such that the standard deviation equals

7, and sampled with four different samplesizes, namely
� � � � � � , � � � � � � ,� � � � � � � and

� � � � � � � , see Figure 4.17. For each sampled signal we add 100
different white noise signals

� ��� � � � , resulting in 100 test signals for each sample
size, see Figure 4.18. For each sample size we denoise each of the 100 test signals
as explained in the beginning of this section.

The Mean Square Errors for the denoised test signals using hard thresholding
are plotted in Figure 4.19 and the Mean Square errors for the denoised test signals
using soft thresholding are plotted in Figure 4.20. The average Mean Square Errors
for the hard thresholding are presented in Table 4.3 and the average Mean Square
Errors for the soft thresholding are presented in Table 4.4.

The results are almost identical to those for the Bumps function. From Figure
4.19 and Figure 4.20 we see that the statistical method performs very well. For
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hard thresholding the Mean Square Errors are almost identical to the optimal Mean
Square Errors. The results for soft thresholding are also good, but the Mean Square
Errors differs a little more for

� � � � � � � . The SURE method also performs well,
but except for

� � � � � � � the statistical method performs better. Comparing Table
4.3 and Table 4.4 we see that the results for hard thresholding are better than the
one for soft thresholding. Thus we achieve the best results using hard thresholding,
and estimating the thresholds levels with the statistical method. In Figure 4.21 we
have plotted the denoised signals using hard thresholding and the statistical method
for estimating the threshold levels.
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Figure 4.17: The HeaviSine function with sample size
� � � � � � , � � � � � � ,� � � � � � � and
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Figure 4.18: The HeaviSine function with sample size
� � � � � � , � � � � � � ,� � � � � � � and

� � � � � � � , and added white noise
� ��� � � � . In the simulation 100

different white noise signals are used for each sample size.
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Figure 4.19: The Mean Square Errors using hard thresholding on the noisy Heavi-
Sine signals. We have used four different sample sizes, and the Mean Square Errors
for the statistical method are plotted against the optimal Mean Square Errors.

Sample size Optimal MSE Statistical method� � � � � � 0.63 0.69� � � � � � 0.24 0.25� � � � � � � 0.10 0.10� � � � � � � 0.043 0.048

Table 4.3: The average Mean Square Errors using hard thresholding on the noisy
HeaviSine signals.
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Figure 4.20: The Mean Square Errors using soft thresholding on the noisy Heavi-
Sine signals. We have used four different sample sizes, and the Mean Square Er-
rors for the statistical method and the SURE method are plotted against the optimal
Mean Square Errors.

Sample size Optimal MSE Statistical method SURE method� � � � � � 0.61 0.69 0.80� � � � � � 0.28 0.28 0.29� � � � � � � 0.12 0.14 0.13� � � � � � � 0.055 0.084 0.070

Table 4.4: The average Mean Square Errors using soft thresholding on the noisy
HeaviSine signals.
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Figure 4.21: The denoised HeaviSine signals using hard thresholding and estimat-
ing the threshold levels using the statistical method.

4.4.3 Doppler

The Doppler function is defined by the equation

� ����� ��� � � � " ���3)�/102� ��� � � - �$� � ��� - �$���$� � � 4 � � 4
The Doppler function is normalized such that the standard deviation equals

7, and sampled with four different samplesizes, namely
� � � � � � , � � � � � � ,� � � � � � � and

� � � � � � � , see Figure 4.22. For each sampled signal we add 100
different white noise signals

� ��� � � � , resulting in 100 test signals for each sample
size, see Figure 4.23. For each sample size we denoise each of the 100 test signals
as explained in the beginning of this section.

The Mean Square Errors for the denoised test signals using hard thresholding
are plotted in Figure 4.24 and the Mean Square errors for the denoised test signals
using soft thresholding are plotted in Figure 4.25. The average Mean Square Errors
for the hard thresholding are presented in Table 4.5 and the average Mean Square
Errors for the soft thresholding are presented in Table 4.6.

The results are almost identical to those from the Bumps and HeaviSine func-
tions. From Figure 4.24 and Figure 4.25 we see that the statistical method performs
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very well. For hard thresholding the Mean Square Errors are almost identical to the
optimal Mean Square Errors. The results for soft thresholding are also good, but
the Mean Square Errors differs a little more for

� � � � � � � . The SURE method
also performs well, but except for

� � � � � � � the statistical method performs bet-
ter. Comparing Table 4.5 and Table 4.6 we see that the results for hard thresholding
are better than the one for soft thresholding. Thus we achieve the best results using
hard thresholding, and estimating the thresholds levels with the statistical method.
In Figure 4.26 we have plotted the denoised signals using hard thresholding and
the statistical method for estimating the threshold levels.
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Figure 4.22: The Doppler function with sample size
� � � � � � , � � � � � � , � � �� � � �

and
� � � � � � � .
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Figure 4.23: The Doppler function with sample size
� � � � � � , � � � � � � , � � �� � � �

and
� � � � � � � , and added white noise

� ��� � � � . In the simulation 100
different white noise signals are used for each sample size.



80 CHAPTER 4. DENOISING BY THRESHOLDING

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Signal

M
ea

n 
S

qu
ar

e 
E

rr
or

Doppler, N
s
=128, Hard thresholding.

Optimal MSE
Statistical method

0 10 20 30 40 50 60 70 80 90 100
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Signal

M
ea

n 
S

qu
ar

e 
E

rr
or

Doppler, N
s
=512, Hard thresholding.

Optimal MSE
Statistical method

0 10 20 30 40 50 60 70 80 90 100
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Signal

M
ea

n 
S

qu
ar

e 
E

rr
or

Doppler, N
s
=2048, Hard thresholding.

Optimal MSE
Statistical method

0 10 20 30 40 50 60 70 80 90 100
0.015

0.02

0.025

0.03

0.035

0.04

0.045

Signal

M
ea

n 
S

qu
ar

e 
E

rr
or

Doppler, N
s
=8192, Hard thresholding.

Optimal MSE
Statistical method

Figure 4.24: The Mean Square Errors using hard thresholding on the noisy Doppler
signals. We have used four different sample sizes, and the Mean Square Errors for
the statistical method are plotted against the optimal Mean Square Errors.

Sample size Optimal MSE Statistical method� � � � � � 0.68 0.79� � � � � � 0.28 0.30� � � � � � � 0.097 0.10� � � � � � � 0.026 0.032

Table 4.5: The average Mean Square Errors using hard thresholding on the noisy
Doppler signals.
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Figure 4.25: The Mean Square Errors using soft thresholding on the noisy Doppler
signals. We have used four different sample sizes, and the Mean Square Errors for
the statistical method and the SURE method are plotted against the optimal Mean
Square Errors.

Sample size Optimal MSE Statistical method SURE method� � � � � � 0.72 0.88 1.15� � � � � � 0.36 0.36 0.44� � � � � � � 0.15 0.16 0.17� � � � � � � 0.054 0.081 0.070

Table 4.6: The average Mean Square Errors using soft thresholding on the noisy
Doppler signals.
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Figure 4.26: The denoised Doppler signals using hard thresholding and estimating
the threshold levels using the statistical method.

4.4.4 Blocks

The Blocks function is defined by the equation

� ����� � � �
� ���


 � � ��� " � � � � ����� � � � - sign
������� ��� 4

� � � �*4 � � 4 � �3� 4 � � � 4 � �3� 4 � � � 4 � � � 4 � � � 4 � � � 4 � � � 4 � � � 4 � � � �
 � � � � � " � �	�3� " � � � � " � 4 � � � 4 � � � 4 � � " �34 � � � 4 � � " � 4 � � 4
The Blocks function is normalized such that the standard deviation equals 7,

and sampled with four different samplesizes, namely
� � � � � � , � � � � � � , � � �� � � �

and
� � � � � � � , see Figure 4.27. For each sampled signal we add 100

different white noise signals
� ��� � � � , resulting in 100 test signals for each sample

size, see Figure 4.28. For each sample size we denoise each of the 100 test signals
as explained in the beginning of this section.

The Mean Square Errors for the denoised test signals using hard thresholding
are plotted in Figure 4.29 and the Mean Square errors for the denoised test signals
using soft thresholding are plotted in Figure 4.30. The average Mean Square Errors
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for the hard thresholding are presented in Table 4.7 and the average Mean Square
Errors for the soft thresholding are presented in Table 4.8.

The results are very similar to the previous ones. From Figure 4.29 and Figure
4.30 we see that the statistical method performs very well. For hard thresholding
the Mean Square Errors are almost identical with the optimal Mean Square Errors.
The results for soft thresholding are also very good. The SURE method also per-
forms well, but the statistical method performs better. Comparing Table 4.7 and
Table 4.8 we see that the results for hard thresholding are better than the one for
soft thresholding. Thus we achieve the best results using hard thresholding, and
estimating the thresholds levels with the statistical method. In Figure 4.31 we have
plotted the denoised signals using hard thresholding and the statistical method for
estimating the threshold levels. From the Figure we see that we have removed some
noise, however, there is a lot of noise left. Thus the denoising is not so good for
the Blocks function. The reason for this is the many discontinuities in the Blocks
function. In the time-frequency domain these discontinuities result in many small
coefficients in the high frequency bands. These small coefficients are removed in
the thresholding process and result in noise when the signal is transformed back
into the time domain.
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Figure 4.27: The Blocks function with sample size
� � � � � � , � � � � � � , � � �� � � �

and
� � � � � � � .
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Figure 4.28: The Blocks function with sample size
� � � � � � , � � � � � � , � � �� � � �

and
� � � � � � � , and added white noise

� ��� � � � . In the simulation 100
different white noise signals are used for each sample size.
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Figure 4.29: The Mean Square Errors using hard thresholding on the noisy Blocks
signals. We have used four different sample sizes, and the Mean Square Errors for
the statistical method are plotted against the optimal Mean Square Errors.

Sample size Optimal MSE Statistical method� � � � � � 0.87 1.03� � � � � � 0.73 0.87� � � � � � � 0.53 0.57� � � � � � � 0.30 0.30

Table 4.7: The average Mean Square Errors using hard thresholding on the noisy
Blocks signals.
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Figure 4.30: The Mean Square Errors using soft thresholding on the noisy Blocks
signals. We have used four different sample sizes, and the Mean Square Errors for
the statistical method and the SURE method are plotted against the optimal Mean
Square Errors.

Sample size Optimal MSE Statistical method SURE method� � � � � � 0.85 1.21 1.56� � � � � � 0.68 0.82 1.00� � � � � � � 0.48 0.51 0.60� � � � � � � 0.29 0.29 0.33

Table 4.8: The average Mean Square Errors using soft thresholding on the noisy
Blocks signals.
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Figure 4.31: The denoised Blocks signals using hard thresholding and estimating
the threshold levels using the statistical method.

4.4.5 Quadchirp

The Quadchirp function is defined by the equation

� ����� � )�/10 � � � � ��� �*� � � ��� 4
The Quadchirp function is normalized such that the standard deviation equals

7, and sampled with four different samplesizes, namely
� � � � � � , � � � � � � ,� � � � � � � and

� � � � � � � , see Figure 4.32. For each sampled signal we add 100
different white noise signals

� ��� � � � , resulting in 100 test signals for each sample
size, see Figure 4.33. For each sample size we denoise each of the 100 test signals
as explained in the beginning of this section.

The Mean Square Errors for the denoised test signals using hard thresholding
are plotted in Figure 4.34 and the Mean Square errors for the denoised test signals
using soft thresholding are plotted in Figure 4.35. The average Mean Square Errors
for the hard thresholding are presented in Table 4.9 and the average Mean Square
Errors for the soft thresholding are presented in Table 4.10.

The results are very similar to the previous ones. From Figure 4.34 and Figure
4.35 we see that the statistical method performs very well. For hard and soft thresh-
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olding the Mean Square Errors are almost identical to the optimal Mean Square
Errors. The SURE method also performs well, but the statistical method performs
better. Comparing Table 4.9 and Table 4.10 we see that the results for hard thresh-
olding are better than the one for soft thresholding. Thus we achieve the best
results using hard thresholding, and estimating the thresholds levels with the sta-
tistical method. In Figure 4.36 we have plotted the denoised signals using hard
thresholding and the statistical method for estimating the threshold levels.
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Figure 4.32: The Quadchirp function with sample size
� � � � � � , � � � � � � ,� � � � � � � and

� � � � � � � .
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Figure 4.33: The Quadchirp function with sample size
� � � � � � , � � � � � � ,� � � � � � � and

� � � � � � � , and added white noise
� ��� � � � . In the simulation 100

different white noise signals are used for each sample size.
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Figure 4.34: The Mean Square Errors using hard thresholding on the noisy Quad-
chirp signals. We have used four different sample sizes, and the Mean Square
Errors for the statistical method are plotted against the optimal Mean Square Er-
rors.

Sample size Optimal MSE Statistical method� � � � � � 0.68 0.79� � � � � � 0.35 0.36� � � � � � � 0.15 0.16� � � � � � � 0.11 0.13

Table 4.9: The average Mean Square Errors using hard thresholding on the noisy
Quadchirp signals.
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Figure 4.35: The Mean Square Errors using soft thresholding on the noisy Quad-
chirp signals. We have used four different sample sizes, and the Mean Square Er-
rors for the statistical method and the SURE method are plotted against the optimal
Mean Square Errors.

Sample size Optimal MSE Statistical method SURE method� � � � � � 0.73 0.90 1.13� � � � � � 0.44 0.46 0.59� � � � � � � 0.29 0.29 0.37� � � � � � � 0.26 0.26 0.33

Table 4.10: The average Mean Square Errors using soft thresholding on the noisy
Quadchirp signals.
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Figure 4.36: The denoised Quadchirp signals using hard thresholding and estimat-
ing the threshold levels using the statistical method.

4.4.6 Mishmash

The Mishmash function is defined by the equation

� � )�/ 0 � � 	�� � ��� �*� � � � - )�/ 0 ��� 4 � � � � � � � � 	�� � ���.- )�/102��� 4 � � � � � � � � � � 	�� �$4
The Quadchirp function is normalized such that the standard deviation equals

7, and sampled with four different samplesizes, namely
� � � � � � , � � � � � � ,� � � � � � � and

� � � � � � � , see Figure 4.37. For each sampled signal we add 100
different white noise signals

� ��� � � � , resulting in 100 test signals for each sample
size, see Figure 4.38. For each sample size we denoise each of the 100 test signals
as explained in the beginning of this section.

The Mean Square Errors for the denoised test signals using hard thresholding
are plotted in Figure 4.39 and the Mean Square errors for the denoised test signals
using soft thresholding are plotted in Figure 4.40. The average Mean Square Errors
for the hard thresholding are presented in Table 4.11 and the average Mean Square
Errors for the soft thresholding are presented in Table 4.12.

The results are very similar to the previous ones. From Figure 4.39 and Fig-
ure 4.40 we see that the statistical method performs very well. For hard and soft
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thresholding the Mean Square Errors are almost identical to the optimal Mean
Square Errors. The SURE method also performs well, but the statistical method
performs better. Comparing Table 4.11 and Table 4.12 we see that the results for
hard thresholding are better than the one for soft thresholding. Thus we achieve
the best results using hard thresholding, and estimating the thresholds levels with
the statistical method. In Figure 4.41 we have plotted the denoised signals using
hard thresholding and the statistical method for estimating the threshold levels.
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Figure 4.37: The Mishmash function with sample size
� � � � � � , � � � � � � ,� � � � � � � and
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Figure 4.38: The Mishmash function with sample size
� � � � � � , � � � � � � ,� � � � � � � and

� � � � � � � , and added white noise
� ��� � � � . In the simulation 100

different white noise signals are used for each sample size.
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Figure 4.39: The Mean Square Errors using hard thresholding on the noisy Mish-
mash signals. We have used four different sample sizes, and the Mean Square
Errors for the statistical method are plotted against the optimal Mean Square Er-
rors.

Sample size Optimal MSE Statistical method� � � � � � 0.87 0.99� � � � � � 0.60 0.63� � � � � � � 0.31 0.32� � � � � � � 0.18 0.18

Table 4.11: The average Mean Square Errors using hard thresholding on the noisy
Mishmash signals.
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Figure 4.40: The Mean Square Errors using soft thresholding on the noisy Mish-
mash signals. We have used four different sample sizes, and the Mean Square
Errors for the statistical method and the SURE method are plotted against the op-
timal Mean Square Errors.

Sample size Optimal MSE Statistical method SURE method� � � � � � 0.91 1.48 2.08� � � � � � 0.70 0.83 1.11� � � � � � � 0.42 0.44 0.56� � � � � � � 0.32 0.32 0.42

Table 4.12: The average Mean Square Errors using soft thresholding on the noisy
Mishmash signals.
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Figure 4.41: The denoised Mishmash signals using hard thresholding and estimat-
ing the threshold levels using the statistical method.

4.4.7 Conclusion

The numerical tests we have done clearly show that the statistical method performs
very well. For both hard and soft thresholding the threshold levels estimated with
the statistical method are very close to the optimal threshold levels for almost all
signals and sample sizes. The SURE method also performs good, but the statistical
method performs better.

We also notice that the Mean Square Errors using hard thresholding are lower
than the Mean Square Errors using soft thresholding. From this we conclude that
the best results are achieved using hard thresholding and estimating the threshold
levels with the statistical method.

4.5 Gabor versus Wavelet denoising

In this section we compare the efficiency of the Gabor denoising against the effi-
ciency of the wavelet denoising. For the experiments we again use the six functions
due to Donoho and Johnstone [11]: Bumps, HeaviSine, Doppler, Blocks, Quad-
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chirp and Mishmash. The functions are normalized such that their standard devi-
ation equals 7, and sampled with four different sample sizes, namely

� � � � � � ,� � � � � � , � � � � � � � and
� � � � � � � . For each signal and sample size we add

100 different white noise signals
� ��� � � � . This gives 100 test signals, with a signal-

to-noise ratio of 7, for each signal and sample size. These test signals are denoised
using hard Gabor denoising, soft wavelet denoising and hard wavelet denoising.
The Mean Square Errors for the hard Gabor denoising are plotted against the Mean
Square Errors for the soft wavelet denoising and the Mean Square Errors for the
hard wavelet denoising. The results can be found in figures 4.42-4.47. The aver-
age Mean Square Errors are also calculated, and the results can be found in tables
4.13-4.18. Notice that whereas hard thresholding gives the best results when Gabor
denoising is used, soft thresholding gives the best results when wavelet denoising
is used.

For the hard Gabor denoising the statistical method is used for estimating the
threshold levels, the frequency resolution

&
is set to 16 and double oversampling

is used. For the hard and soft wavelet denoising the wavelet toolbox in Matlab
is used. Each of the test signals are denoised using the “wden” function with the
following settings: Symlet 8 wavelets, 5 levels decomposition, Steins unbiased risk
estimate and no rescaling.

The results show that the “GaborShrink” method can compete with the “WaveShrink”
method.

� For both the Quadchirp function and the Mishmash function the results for
the Gabor denoising are much better than the ones for wavelet denoising, see
Figure 4.46 and Figure 4.47.

� For the Bumps function the results for the Gabor denoising are a little better
than the ones for wavelet denoising, see Figure 4.42.

� For the Doppler function the results for the Gabor denoising and the wavelet
denoising are almost identical, see Figure 4.44. The Gabor denoising is a
little better for

� � � � � � � , but the wavelet denoising is a little better for� � � � � � .
� For the HeaviSine function the results for the wavelet denoising are a little

better than the ones for the Gabor denoising, see Figure 4.43.

� For the Blocks function the results for the wavelet denoising are better than
the ones for the Gabor denoising, see Figure 4.45. This is due to the reasons
explained in section 4.4.4.

From this we conclude that the “GaborShrink” method is a very good alterna-
tive to the “WaveShrink” method, especially when denoising unregular signals like
the Quadchirp, Mishmash and Bumps signals.
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Figure 4.42: The Mean Square Errors denoising the noisy Bumps signals. We
have used four different sample sizes, and the Mean Square Errors for the hard
thresholded Gabor denoising are plotted against the Mean Square Errors for the
hard thresholded and soft thresholded wavelet denoising.

Sample size Hard Gabor den. Hard wavelet den. Soft wavelet.� � � � � � 0.65 0.95 0.81� � � � � � 0.31 0.60 0.38� � � � � � � 0.11 0.27 0.13� � � � � � � 0.04 0.11 0.04

Table 4.13: The average Mean Square Errors denoising the noisy Bumps signals.
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Figure 4.43: The Mean Square Errors denoising the noisy HeaviSine signals. We
have used four different sample sizes, and the Mean Square Errors for the hard
thresholded Gabor denoising are plotted against the Mean Square Errors for the
hard thresholded and soft thresholded wavelet denoising.

Sample size Hard Gabor den. Hard wavelet den. Soft wavelet.� � � � � � 0.69 0.58 0.36� � � � � � 0.25 0.35 0.14� � � � � � � 0.10 0.22 0.07� � � � � � � 0.05 0.12 0.04

Table 4.14: The average Mean Square Errors denoising the noisy HeaviSine sig-
nals.
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Figure 4.44: The Mean Square Errors denoising the noisy Doppler signals. We
have used four different sample sizes, and the Mean Square Errors for the hard
thresholded Gabor denoising are plotted against the Mean Square Errors for the
hard thresholded and soft thresholded wavelet denoising.

Sample size Hard Gabor den. Hard wavelet den. Soft wavelet.� � � � � � 0.79 0.83 0.60� � � � � � 0.30 0.60 0.29� � � � � � � 0.10 0.29 0.11� � � � � � � 0.032 0.13 0.050

Table 4.15: The average Mean Square Errors denoising the noisy Doppler signals.
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Figure 4.45: The Mean Square Errors denoising the noisy Blocks signals. We
have used four different sample sizes, and the Mean Square Errors for the hard
thresholded Gabor denoising are plotted against the Mean Square Errors for the
hard thresholded and soft thresholded wavelet denoising.

Sample size Hard Gabor den. Hard wavelet den. Soft wavelet.� � � � � � 1.03 0.94 0.82� � � � � � 0.87 0.80 0.49� � � � � � � 0.57 0.55 0.25� � � � � � � 0.30 0.32 0.11

Table 4.16: The average Mean Square Errors denoising the noisy Blocks signals.
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Figure 4.46: The Mean Square Errors denoising the noisy Quadchirp signals. We
have used four different sample sizes, and the Mean Square Errors for the hard
thresholded Gabor denoising are plotted against the Mean Square Errors for the
hard thresholded and soft thresholded wavelet denoising.

Sample size Hard Gabor den. Hard wavelet den. Soft wavelet.� � � � � � 0.79 0.95 0.80� � � � � � 0.36 0.96 0.75� � � � � � � 0.16 0.97 0.73� � � � � � � 0.13 0.97 0.79

Table 4.17: The average Mean Square Errors denoising the noisy Quadchirp sig-
nals.



104 CHAPTER 4. DENOISING BY THRESHOLDING

0 10 20 30 40 50 60 70 80 90 100
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Signal

M
ea

n 
S

qu
ar

e 
E

rr
or

Mishmash, N
s
=128

Hard Gabor
Hard wavelet
Soft wavelet

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Signal

M
ea

n 
S

qu
ar

e 
E

rr
or

Mishmash, N
s
=512

Hard Gabor
Hard wavelet
Soft wavelet

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Signal

M
ea

n 
S

qu
ar

e 
E

rr
or

Mishmash, N
s
=2048

Hard Gabor
Hard wavelet
Soft wavelet

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Signal

M
ea

n 
S

qu
ar

e 
E

rr
or

Mishmash, N
s
=8192

Hard Gabor
Hard wavelet
Soft wavelet

Figure 4.47: The Mean Square Errors denoising the noisy Mishmash signals. We
have used four different sample sizes, and the Mean Square Errors for the hard
thresholded Gabor denoising are plotted against the Mean Square Errors for the
hard thresholded and soft thresholded wavelet denoising.

Sample size Hard Gabor den. Hard wavelet den. Soft wavelet.� � � � � � 0.99 0.97 0.98� � � � � � 0.64 0.99 0.96� � � � � � � 0.32 1.00 0.95� � � � � � � 0.18 1.00 0.94

Table 4.18: The average Mean Square Errors denoising the noisy Mishmash sig-
nals.

4.6 Denoising music

In addition to the numerical tests in the last section we have denoised an old record-
ing of Grieg playing the piano. The recording is from the beginning of the 20’th
century and contains strong white noise. The recording is denoised using hard Ga-
bor thresholding, but we have not used the statistical method for estimating the
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noise level. Instead we tried several thresholding levels and chose the one that
sounded best. We chose this approach because it is not always the most optimal
denoised signal that sounds best. This is because our ears are complex and nonlin-
ear instruments.

The original recording and the denoised version can be downloaded from http://www.ii.uib.no/ � oddvar/Grieg.html.
It should be mentioned that the denoised version still contains some noise. This is
because the noise in the original recording is not completely white, it contains
spikes or outliers. These spikes have larger amplitude than the rest of the noise
and are therefore not removed in the thresholding procedure. In wavelet denoising
there is done research on this type of noise, and a method called “outlier resistant
wavelet transform” is designed [1]. It is probably possible to design an outlier re-
sistant method for Gabor denoising too, something that will give a better denoising
of the recording.
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Chapter 5

Concluding remarks and further
work

In this thesis we have presented the mathematical techniques for the Gabor trans-
form and the inverse Gabor transform. We have treated both the critical sampled
and the oversampled case. For both cases we developed algorithms, and analyzed
the computational cost of them.

We developed a method called “GaborShrink” for the removal of white noise
from signals. The method uses transform-based filtering, working in three steps:

� Transform the noisy data into the time-frequency domain using the Gabor
transform.

� Hard threshold the coefficients, thereby suppressing those coefficients con-
taining noise.

� Transform back into the original domain using the inverse Gabor transform.

For the estimation of the threshold level we developed a method using the statistical
properties of the white noise. We showed that this method performed very well
compared to the optimal threshold level.

We denoised six different test functions using both the “GaborShrink” method
and the “WaveShrink” method. We compared the results and showed that the
“GaborShrink” method performed better for the Quadchirp, the Mishmash and the
Bumps function. We concluded that the “GaborShrink” is a very good alternative
to the “WaveShrink”, especially when denoising unregular signals.

Further work
� We have only tested hard and soft thresholding in this thesis. There exists

other techniques that can be tested, like Garrote shrinkage [5], Firm shrink-
age [17] and cycle spinning [8].

107
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� In Subsection 4.3.3 we mentioned that it is possible to estimate the noise
level from the median of the coefficients in the highest frequency bands. We
have done a few numerical tests with good results, however, more research
is needed.

� Recently, a new sampling lattice - the quincunx lattice - has been introduced
as a sampling geometry in the Gabor scheme, which geometry is different
from the traditional rectangular sampling geometry [27]. The “GaborShrink”
can be implemented with the quincunx sampling lattice and the efficiency
can be compared against the regular sampling lattice.

� An outlier resistant method for the “GaborShrink” can be developed, see
Section 4.6.

� The Gabor transform and its inverse can be extended to two dimensions, and
the “GaborShrink’ can then be tested on noisy images.



Appendix A

A.1 Proof of theorem 2.3.2

Proof. We start with the Gabor transform (2.19)
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Rearranging factors we get
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� � � � �� � - � � �� � � � � - � � 4

Thus making the substitution � � � � - � � we get

�1� � �#"2$�& � � � � � ' ���
� ���

�� � � � ��� �
- � � ��� � � � -�� � " 6 � � ��� ������� �-, � ' 4

Multiplying the right side with
� ����� � , � ' � ������� � , � ' � � and taking a final rear-

rangement we find

�1� � �#"2$�& � � � � � �� � � � ��� �
- � � � � ������� � , � ' ' ���

� ��� �
� � � - � � " 6 � � ��� �����() � � � / , � ' 4
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Since the sum over � is infinite we can make the substitution 6 � � � " 6 , this
gives

��� � �#"2$�&�� � � � � � �� � � � ��� �
- � � � � ������� � , � ' � � ' ���

� �5���
�
� � - 6 � � ��� ������� � � , � ' � � 4

Comparing with (1.8) and (1.10) we see that the first summation is the Zak trans-
form of the signal ��� ��� and the second is the Zak transform of the window function� � ��� , i.e. ���� � �#"%$ � ��& � � � ���� � �#"2$ � ��& � ���� � � �#"2$ � ��& � � (A.1)

which completes the proof.
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