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Abstract

This paper describes a new method of lossy still image compression, called Adap-
tively Scanned Wavelet Difference Reduction (ASWDR). The ASWDR method
produces an embedded bit stream with region of interest capability. It is a simple
generalization of the compression method developed by Tian and Wells, which
they have dubbed Wavelet Difference Reduction (WDR). While the WDR method
employs a fixed ordering of the positions of wavelet coefficients, the ASWDR
method employs a varying order which aims to adapt itself to specific image fea-
tures. This image adaptive approach enables ASWDR to outperform WDR in
a rate-distortion sense, and to essentially match the rate-distortion performance
of the widely used codec, SPIHT, of Said and Pearlman. ASWDR compressed
images exhibit better perceptual qualities, especially at low bit rates, than WDR
and SPIHT compressed images. ASWDR retains all of the important features of
WDR: low complexity, region of interest capability, embeddedness, and progres-
sive SNR.

Keywords: Image compression; wavelet transform; signal processing.

1 Introduction

This paper describes an improvement of the WDR algorithm of Tian and Wells
([1] and [2]), referred to as ASWDR. The ASWDR algorithm aims to improve
the subjective perceptual qualities of compressed images and improve the results
of objective distortion measures. We shall treat two distortion measures, PSNR
and edge correlation, which we shall define in the section on experimental results.
PSNR is a commonly used measure of error, while edge correlation is a measure
that we have found useful in quantifying the preservation of edge details in com-
pressed images, and seems to correspond well to subjective impressions of the
perceptual quality of the compressed images.

ASWDR achieves these improvements of WDR while retaining all of the im-
portant features of WDR, such as low complexity, region of interest (ROI) ca-
pability, embeddedness, and progressive SNR capability. The improved quality
of ASWDR compressed images at low bit rates, plus its ROI capability, has ap-
plications to image database search/retrieval, to remote medical image transmis-
sion/diagnosis, and to multi-resolution methods for reconnaissance and feature
extraction.



The paper is organized as follows. Section 2 briefly describes the WDR algo-
rithm. In Section 3 we discuss the rationale behind ASWDR and give a detailed
description of this new algorithm. In Section 4 we discuss experimental results of
applying ASWDR to compressing test images, and compare it to WDR and the
SPIHT algorithm [3]. A brief concluding section ends the paper.

2 TheWDR algorithm

The ASWDR method is a generalization of the WDR method of Tian and Wells
([1] and [2]), so we shall begin by briefly summarizing the WDR method. The
WDR method has two principal advantages. First, it produces an embedded bit
stream—thereby facilitating progressive transmission over small bandwidth chan-
nels and/or enabling multiresolution searching and processing algorithms. Sec-
ond, it encodes the precise indices for significant transform values—thereby al-
lowing for Region of Interest (ROI) capability and for image processing opera-
tions on compressed image files [4].

The WDR algorithm is a remarkably simple procedure. A wavelet transform
is applied to the image. Then, the bit-plane encoding procedure for the transform
values, described in [5] and [3], is carried out. This bit-plane encoding procedure
consists of a significance pass and a refinement pass. During the significance pass,
the values of the wavelet transform of the image are scanned through in a linear
order (say, x[1], z[2], ..., =[M], where M is the number of pixels), and a value
is deemed significant if it is greater than or equal to a threshold value. An index
n is removed from the scanning order if it is found to be significant. During the
refinement pass, previous significant values are refined to a further precision.

The distinguishing feature of WDR is its method of encoding the positions
of significant transform values. This method is called difference reduction. It is
most easily described through an example. Suppose that the significant indices
found in the significance pass are 2, 3, 7, 12, and 34. Rather than work with
these values, we work with their successive differences: 2, 1, 4, 5, 22. In this
latter list, the first number is the starting index and each successive number is the
number of steps needed to reach the next index. The binary expansions of these
successive differences are (10), (1)2, (100)2, (101)9, and (10110),. Since the
most significant bit in these expansions is always 1, we can drop this bit and use
the signs of the significant transform values as separators in the symbol stream.
For example, suppose that these significant transform values are z[2] = +34.2,
z[3] = —33.5, z[7] = +48.2, z[12] = +40.34, and z[34] = —54.36, then the



resulting symbol stream would be +0 — 400 + 01 — 0110.

When arithmetic coding is employed, then a probabilistic model is used for
encoding the four symbols +, —, 0, and 1, into a compressed stream of bits [6].
The WDR method described in [1] and [2] uses an arithmetic coding technique to
slightly improve compression performance, although it is also possible to use the
two-bit encoding of these four symbols described below.

Once the positions of significant transform values have been determined for
a certain threshold, then these positions are removed from the scan order. For
instance, if the initial positions are x[1], z[2], ..., 2[256], say, and z[1] and x[12]
are found to be significant, then the insignificant transform values are z[2], ...,
x[11], z[13],..., x[256], which are then mapped to a new set of values {Z[m]} as
follows: Z[1] = z[2],..., [10] = z[11], Z[11] = =2[13], ..., T[254] = z[256].
This has the effect of reducing the lengths of subsequent binary expansions of the
number of steps between new significant positions.

The refinement bits generated in the refinement pass are produced via the stan-
dard bit-plane quantization procedure. For instance, if an old significant transform
value’s magnitude lies in the interval [32, 48) say, and the present threshold is 8,
then it will decided if this magnitude lies in either [32, 40) or [40, 48). In the for-
mer case, the bit 0 is generated, while in the latter case, the bit 1 is generated. This
amounts to encoding each significant value in a binary expansion using the initial
threshold as unit-value. The symbol stream generated during the refinement pass
is already naturally encoded in bits, but arithmetic compression can be used to
slightly reduce the size of this bit stream.

3 The ASWDR algorithm

Now that we have briefly outlined the WDR algorithm, we can describe the im-
proved version of this algorithm, the ASWDR algorithm. We shall begin with a
step-by-step description of ASWDR, and then discuss the rationale behind it.

The ASWDR Method
Step 1. Perform a wavelet transform of the discrete image, {f[, j|}, pro-

ducing the transformed image, { f[i, j]}. In the experiments described be-
low, a Daub 9/7 transform (see [7]) was used.

Step 2. Choose a scanning order for the transformed image, which is a
one-to-one and onto mapping, f[i,j] = z[k], whereby the transform val-
ues are scanned through via a linear ordering £ = 1,2,..., M. In [1] and
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[2], the scanning order is a zigzag through subbands from higher-scale to
lower-scale [5] with row-based scanning in the lowpass/highpass (horizon-
tal) subbands and column-based scanning in the highpass/lowpass (vertical)
subbands.

Step 3. Choose an initial threshold, 7, such that at least one transform
value, x[n] say, satisfies |z[n]| > T and all transform values, x[k], satisfy
|z[k]| < 2T.

Step 4. (Significance pass). Record positions for new significant values—
i.e., those new indices m for which z[m/| has a magnitude greater than or
equal to the present threshold. Encode these new significant indices using
the difference reduction method.

Step 5. (Refinement pass). Record refinement bits, the next significant bits,
for the old significant transform values (significant transform values deter-
mined using larger threshold values). This generation of refinement bits is
the standard bit-plane encoding that is employed by all embedded codecs
(as described in [5] and [3], and which we briefly summarized above).

Step 6. (New Scanning Order). For the highest-scale level (the one contain-
ing the all-lowpass subband), use the indices of the remaining insignificant
values as the scan order at that level. Use the scan order at level j to create
the new scan order at level ; — 1 as follows. Run through the significant
values at level j in the wavelet transform. Each significant value, called a
parent value, induces a set of four child values as described in the spatial-
orientation tree definition in [3]. The first part of the scan order at level
j — 1 contains the insignificant values lying among these child values. Run
through the insignificant values at level j in the wavelet transform. The sec-
ond part of the scan order at level ; — 1 contains the insignificant values
lying among the child values induced by these insignificant parent values.
Use this new scanning order for level j — 1 to create the new scanning order
for level 7 — 2, until all levels are exhausted.

Step 7. Divide the present threshold by 2. Repeat Steps 4-6 until either a
given bit budget is exhausted or a given distortion metric is satisfied.

When decoding, the steps above are recapitulated to produce a quantized output.
At the very end, each quantized value is rounded into the midpoint of the quanti-



zation bin that it lies in. During this ASWDR procedure, the symbol output can
also be subjected to arithmetic coding in order to achieve further compression.

In practice it was found to be better to skip Step 6 for the first five rounds.
The reason for doing this will be provided below, along with the rationale for
performing Step 6 after the first five rounds.

This seven-step ASWDR procedure is nothing more than the WDR procedure,
but with the addition of the new Step 6 for creation of new scanning orders. We
shall now give a justification for performing this step. It does not greatly increase
the complexity of the algorithm, since it adds only four comparison operations
per pixel (the testing of insignificance of child values for inclusion in the new
scanning order) to one-quarter of the total number of pixels. That is an average
of one comparison operation per pixel. This is not a substantial increase over the
low-complexity of the WDR algorithm.

The reasons for producing this new scanning order are to (1) use a scan order
that reflects the correlation between significant parent transform values and signif-
icant child transform values, and (2) to force insignificant values lying in zerotrees
to the back of the scanning order at each level. The aim is to reduce the number of
steps between significant transform values, thereby decreasing the lengths of the
symbol strings needed for encoding these distances. In [8] it is shown that there
is a high correlation between significant transform values, whose magnitudes are
at least 7', and significant child transform values, whose magnitudes are at least
T/2. Figure 4B in [8] provides a good illustration of this correlation. That figure
shows a conditional histogram for fine scale horizontal subband transform values
from the Boats test image. The conditional histogram is of log, |C| (base 2 log
of child magnitudes) versus log, | P| (base 2 log of parent magnitudes). It is clear
from the figure that a large percentage of child magnitudes are above log, | P| — 1,
i.e., are either significant at the present threshold (hence already coded) or will be
significant at the next threshold (hence should be scanned first).

In Fig. 1, we provide an illustration of this correlation. This figure was ob-
tained from a Daub 9/7 wavelet transform of the Lena image. Figure 1(a) depicts
the insignificant child values (shown in white) in the 1% level vertical subband of
significant parent values in the 2°¢ level vertical subband, when the threshold is
32. Figure 1(b) depicts the new significant values for the half-threshold—those
whose magnitudes are less than 32 and greater than or equal to 16—in the 1%
vertical subband. Notice that the child locations in Fig. 1(a) are good predictors
for the new significant values in Fig. 1(b). Although these predictions are not per-
fectly accurate, there is a great deal of overlap between the two images (in fact,
the fraction of new significant values that lie within the first part of the scan order
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created by Step 6 is 0.58). By putting these child locations into the first part of
the new scanning order at each level, the number of steps between them should be
reduced. In fact, if a prediction is correct, then the output specifying that location
will consist of only the sign of the new significant value.

Figure 1: (a) Insignificant children in the 15 vertical subband having significant
parents in the 2"¢ vertical subband when the threshold is 32. (b) New significant
values in the 1% vertical subband when the threshold is decreased to 16.

Notice also how the locations of significant values are highly correlated with
the location of edges in the Lena image. The scanning order of ASWDR dynam-
ically adapts to the locations of edge details in an image, and this enhances the
resolution of these edges in ASWDR compressed images.

We now present some statistics for estimating the conditional probability P(1% | new),
defined by

P(1°" | new) = Prob(new sig. value in 1¢ part of scan | new sig. value), (1)



of a new significant value being found within the first part of the new scan order
(for a fixed level) created by ASWDR. In Table 1 we give the fraction of new sig-
nificant values being found in the first part of the new scan order at several levels
for four test images and for a random noise image. The data in this table clearly
show that the probability in Eq. (1) is much greater for high-magnitude threshold
values for the test images than for the random noise image. (By high-magnitude
values we mean those values whose magnitudes are greater than the standard devi-
ation of the child subband.) Such high probabilities justify scanning through child
values of significant parents first. It should be noted that probabilities between
0.3 and 0.6 only begin to be realized at thresholds below 256. Such thresholds
occur, for the images used, after the fifth pass through the loop in the ASWDR
procedure. That is the justification for skipping Step 6 in the ASWDR procedure
the first five times through.

Notice that, for the random noise only, it is unlikely that a newly significant
child value will be found in the first part of the scan order when the threshold
is greater than the standard deviation for the child subband. This facilitates the
separation of noisy transform values from image transform values at much lower
thresholds than is possible with the standard wavelet thresholding methods. This
new denoising methodology is described in [9].

The new scanning order step in the ASWDR procedure also assigns indices
for insignificant children of insignificant parents to the second part of the new
scanning order. This is an attempt to exploit the prevalence of zerotrees in wavelet
transforms. The prevalence of zerotrees in wavelet transforms of natural images is
well-known ([5] and [3]). Since significant transform values will never be found
in zerotrees, each new scanning order aims to force the components of zerotrees
to the ends of the scanning order at each level. The goal is to reduce the number of
steps between those significant transform values whose parents are insignificant
by forcing those values toward the beginning of the scan order.

In the paragraphs above, we have given an a priori justification for creating a
new scanning order. We now give an a posteriori justification. We present some
data which show that the new scanning order step in ASWDR does allow it to
encode more transform values than WDR. The only difference between ASWDR
and WDR is in the predictive scheme employed by ASWDR to create new scan-
ning orders. Consequently, if ASWDR typically encodes more values than WDR
does, then this must be due to the success of the predictive scheme. In Table 2,
there is a comparison of the number of values encoded by WDR and ASWDR for
four test images at different compression ratios. The ASWDR and WDR methods
both used the Daub 9/7 wavelet transform with 7 subband levels. The values for



Parent level/Threshold | 512 256 128 64 32 16 8
Lena, 4", 0 = 37 (0.30) | 0.37 0.46 | 0.57 | 0.66 | 0.68 | 0.68
Lena, 39, o0 = 15 (0.07) | 0.31 | 0.50| 0.56 | 0.55 | 0.50
Lena, 2", 0 =19 (0.95) | 0.51 | 0.54 | 0.49 | 0.38
Barbara, 4™, 0 =38 | (0.06) | 0.43 0.54 | 0.60 | 0.63 | 0.68 | 0.77
Barbara, 3'4, 0 = 22 0.01 0.09 | 0.26 | 0.38 | 0.51 | 0.60
Barbara, 2", o = 12 0.03 |0.21]0.37 | 0.51 | 0.51
Goldhill, 4™, 0 = 34 | (0.00) | 0.31 0.42 | 0.48 | 0.59 | 0.69 | 0.68
Goldhill, 34, o = 15 (0.04) | 0.24 | 0.37 | 0.45 | 0.54 | 0.65
Goldhill, 2", o = 6 (0.07) | 0.32 | 0.35 | 0.40 | 0.46
Airfield, 4", 0 = 66 0.21 0.36 0.46 | 0.56 | 0.61 | 0.76 | 0.86
Airfield, 3", o = 28 (0.00) | 0.29 0.39 | 0.46 | 0.50 | 0.76 | 0.71
Airfield, 2", o = 10 (0.14) | 0.30 | 0.43]0.43 | 0.38 | 0.54

Noise, 41", o = 42 0.01 | 0.18 | 0.50 | 0.74 | 0.86

Noise, 3'4, o = 44 0.01 |0.19]|0.52 | 0.74 | 0.88

Noise, 2™, o = 43 0.00 0.01 | 0.21]0.54 | 0.76 | 0.88

Table 1: Fraction of new significant values captured by first part of the new scan
order created by ASWDR. The standard deviations o are for the child subbands
of each level. The Noise image was created by wavelet transforming a simulation
of Gaussian random noise with mean 0 and standard deviation 48. A fraction
in parentheses indicates that it may be an unreliable estimate of the conditional
probability P(1°" | new) in Eq. (1), due to the number of new significant values
being too small (less than 200).




ASWDR and WDR were obtained without arithmetic coding. The coding used
was a binary encoding. In other words, the significance symbols 0, 1, +, and —
were encoded as the two-bit strings 00, 01, 10, and 11, respectively, and the re-
finement bits 0 and 1 were left as is, and all these bits were then packed together
as 8-bit bytes.

The data in Table 2 shows that, in almost every case, ASWDR encodes more
values than WDR. This provides an a posteriori justification for adding the new
scanning order step to the WDR procedure.

4 Experimental results

In this section we shall compare ASWDR with WDR and with one of the best im-
age codecs—one that gives nearly the highest PSNR* values over a wide range of
test images—the SPIHT method of [3]. We used the test images, Lena, Goldhill,
Barb, and Airfield [10].

We begin with PSNR values for ASWDR, WDR, and SPIHT. In Table 3 we
show the results of using ASWDR and SPIHT without arithmetic coding. Both
ASWDR and WDR used a 7-level Daub 9/7 wavelet transform. The distortion
measure used in the table is PSNR, which although it is not always reliable as a
gauge of subjective visual quality, has become a defacto standard for comparing
codecs. We shall report below the results for an edge correlation measure, which
seems to be more faithful to the perceptual quality of compressed images.

The results in Table 3 show that SPIHT and ASWDR perform at essentially
the same level when arithmetic compression is not employed. There are situa-
tions where the need for speed is critical and the use of arithmetic compression is
avoided in such cases. When arithmetic compression is not employed, the advan-
tages of ASWDR—such as its ROI capability and its ability to carry out image
processing operations on compressed data—make it a worthwhile alternative to
the SPIHT method.

When arithmetic compression is employed, the SPIHT method performs better
than the ASWDR and WDR methods in terms of the PSNR metric. This is shown
by the results in Table 4. The differences in PSNR between ASWDR and SPIHT
are relatively small, however, and may only reflect the fact that ASWDR uses a
relatively unsophisticated model for arithmetic coding. It employs a context-1

1The Peak Signal to Noise Ratio, PSNR, in decibelsis 101og,,(255%/|f — g||3), where f and
g arethe original and compressed images.
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Image\ Method WDR | ASWDR | % increase
Lena, 0.25 bpp 10,450 | 11,105 6.3%
Lena, 0.5 bpp 20,809 | 22,370 7.5%
Goldhill, 0.25 bpp | 10,410 | 10,210 —1.9%
Goldhill, 0.5bpp | 22,905 | 23,394 2.1%
Barbara, 0.25 bpp | 11,681 | 12,174 4.2%
Barbara, 0.5 bpp | 23,697 | 24,915 5.1%
Airfield, 0.25 bpp | 10,519 | 11,228 6.7%
Airfield, 0.5 bpp 19,950 | 21,814 9.3%

Table 2: Comparison of numbers of values encoded by WDR and ASWDR.

Image\ Method SPIHT | ASWDR | WDR
Lena, 0.25 bpp 33.51 33.44 33.22
Goldhill, 0.25 bpp | 30.15 30.17 | 30.20
Barbara, 0.25 bpp | 27.07 26.92 26.77
Airfield, 0.25bpp | 25.50 25.46 25.28
Lena, 0.5 bpp 36.71 36.52 36.27
Goldhill, 0.5bpp | 32.66 32.62 | 3247
Barbara, 0.5 bpp 30.82 30.74 30.53
Airfield, 0.5 bpp 28.05 28.03 27.76

Table 3: PSNR values for three methods, without arithmetic compression.
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model [11] for encoding the four significance symbols. That is, four separate his-
tograms are used for encoding each symbol based on its frequency of occurrence
following one of the four possible previous symbols. For encoding the two refine-
ment bits, ASWDR simply uses a single histogram (i.e., a context-0 model [11]).
SPIHT, on the other hand, employs a more sophisticated coding procedure based
on spatial context modeling [12].

PSNR values, however, do not tell the whole story. We now turn to an exami-
nation of some compressed images done with each algorithm.

In Fig. 2, we show compressions of the Lena image at 0.5 bpp (16:1). It
is difficult to observe any differences at all between any of these images. This
illustrates that all three compression methods produce equally good compressions
at moderately high bit rates.

Some differences between compressed images do appear at lower bit rates. For
example, in Fig. 3 we show 0.25 bpp (32:1) compressions of the Barbara image.
The ASWDR and WDR images are perceptually superior to the ones produced by
SPIHT. The SPIHT compression has distorted Barbara’s left eye and erased large
parts of the striping on the tablecloth. The ASWDR and WDR compressions are
more difficult to distinguish. The ASWDR image does preserve some fine details
which WDR erases or distorts, we show this in the magnified images in Fig. 4.
The ASWDR compression in Fig. 4(b) has retained more of the striping in the
tablecloth than the WDR compression in Fig. 4(a). At the bottom corner of the
tablecloth, the striping in the ASWDR compression is in the proper orientation,
while in the WDR compression it has lost much of its coherence (and appears
as slightly thicker stripes with a different orientation from the original). The toy
track is also slightly better preserved by the ASWDR compression.

As another example, we examine compressions of the Airfield image at a very
low bit rate. In Fig. 5 we show compressed images of Airfield at 0.0625 bpp
(128:1). The WDR and ASWDR methods both preserve more of the fine details
in the image. At the top of its image in Fig. 5(c), SPIHT erases many fine details
such as the telephone pole and two small square structures to the right of the thin
black rectangle. These details are preserved, at least partially, by both WDR and
ASWDR. The ASWDR image does the best job retaining some structure in the
telephone pole. ASWDR is also best at preserving the outline of the swept-back
winged aircraft, especially its thin nose, located to the lower left of center.

Of course, a few images are not sufficient for drawing broad conclusions.
Clearly, some objective measure of the preservation of details is needed. Ob-
servers have commented that WDR and ASWDR compressed images appear sharper
than SPIHT compressed images. Reasoning that human visual systems focus on
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(A
Figure 2: Compressions of Lena at 0.5 bpp. (a) WDR compression. (b) ASWDR
compression. (¢) SPIHT compression. (d) Original (8 bpp).
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(c) (d)
Figure 3: Compressions of Barbara at 0.25 bpp. (a) WDR compression. (b)
ASWDR compression. (c) SPIHT compression. (d) Original (8 bpp).
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@
Figure 4: Magnifications of Barbara compressions at 0.25 bpp. (a) WDR com-
pression. (b) ASWDR compression. (c) SPIHT compression. (d) Original (8

bpp).
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Figure 5: Compressions of Airfield at 0.0625 bpp. (a) WDR compression. (b)
ASWDR compression. (c) SPIHT compression. (d) Original (8 bpp).
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edges when analyzing images, the following method was used to produce an im-
age that retains only edges. First, a 3-level Daub 9/7 transform of an image is
created. Second, the all-lowpass subband is subtracted away from this transform.
Third, an inverse transform is performed on the remaining part of the transform.
This produces a highpass filtered image, which exhibits edges from the original
image. A similar highpass filtered image is created from the compressed image.
Both of these highpass filtered images have mean values that are approximately
zero. We define the edge correlation ~3 by

V3 =

cqm | nqw

where o2 denotes the variance of the values of the highpass filtered version of
the compressed image, and o2 denotes the variance of the values of the highpass
filtered version of the original image. Thus 3 measures how well the compressed
image captures the variance of edge details in the original image.

Using this edge correlation measure, we obtained the results shown in Ta-
bles 5 and 6. In every case, the ASWDR and WDR compressions have higher
edge correlations than the SPIHT compressions. The ASWDR edge correlations
are, in almost every case, slightly higher than the WDR edge correlations. These
numerical results are consistent with the increased preservation of details within
ASWDR and WDR images. Notice that, for the magnified image of Barbara, the
edge correlations in Table 6 show that ASWDR is clearly superior to both WDR
and SPIHT (and WDR is superior to SPIHT as well).

For the airfield compressions in Fig. 5, we show in Table 7 the values for three
different edge correlations v, £ = 3, 4, and 5. The variable & equals the number
of levels in the Daub 9/7 wavelet transform retained by the high-pass filtering.
A higher value of £ means that edge details at lower resolutions were used in
computing the edge correlation ~,. The edge correlations in Table 7 show that
ASWDR is best, at the very low bit rate of 0.0625 bpp, in preserving edges in the
airfield image over several resolution levels.

The results described in this section show that ASWDR is a promising new
method, which yields improved preservation of details at low bit rates. Preserving
details at low bit rates is a vital property for applications such as remote medical
diagnosis via rapid transmission of compressed images, and fast search/retrieval
of images in databases.
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Image\ Method SPIHT | ASWDR | WDR
Lena, 0.25 bpp 33.93 33.64 33.39
Goldhill, 0.25 bpp | 30.49 30.34 30.33
Barbara, 0.25 bpp | 27.47 27.03 26.87
Airfield, 0.25bpp | 25.90 25.64 25.49
Lena, 0.5 bpp 37.09 36.64 36.45
Goldhill, 0.5 bpp 33.10 32.85 32.70
Barbara, 0.5 bpp 31.29 30.87 30.68
Airfield, 0.5 bpp 28.57 28.36 28.12

Table 4: PSNR values for three methods, with arithmetic compression.

Image/Method ASWDR | WDR | SPIHT
Lena, 0.5 bpp 0.96 0.95 0.93
Lena, 0.25 bpp 0.90 0.89 0.87
Goldhill, 0.5 bpp 0.93 0.92 0.85
Goldhill, 0.25 bpp 0.76 0.76 0.71
Barbara, 0.5 bpp 0.92 0.91 0.87
Barbara, 0.25 bpp 0.81 0.80 0.74
Airfield, 0.5 bpp 0.88 0.88 0.85
Airfield, 0.25 bpp 0.77 0.76 0.73

Table 5: Edge correlations, with arithmetic compression.

Method/Measure | Edge Corr.
ASWDR 0.81
WDR 0.77
SPIHT 0.69

Table 6: Edge correlations for magnifications of Barbara in Fig. 4.
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5 Conclusion

In this paper it was shown that an adaptively scanned wavelet difference reduc-
tion method yields an embedded codec, comparable in performance to the widely
used SPIHT codec, but which has ROI capability and is better at preserving edge
details. Future work will aim to improve the prediction procedure used to adap-
tively construct new scanning orders. This work should involve a weighted, linear
predictor as described in [8].

The tree-based nature of ASWDR applies to uniform subband transforms.
Hence it should be adapted to such transforms, in order to produce better per-
formance for images like Barb and Goldhill.

The present version of ASWDR, like SPIHT, is memory intensive. Further
research is needed to produce a block wavelet transform version of ASWDR. Such
a block transform should yield an accompanying localized denoising procedure.
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Corr./Method | ASWDR | WDR | SPIHT
Y3 0.51 0.48 0.44
Y4 0.68 0.67 0.61
Vs 0.78 0.77 0.71

Table 7: Edge correlations for 128:1 compressions of Airfield image.
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