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1 Image compression

There are two types of image compression: lossless and lossy. With lossless
compression, the original image is recovered exactly after decompression.
Unfortunately, with images of natural scenes it is rarely possible to obtain
error-free compression at a rate beyond 2:1. Much higher compression ratios
can be obtained if some error, which is usually difficult to perceive, is allowed
between the decompressed image and the original image. This is lossy com-
pression. In many cases, it is not necessary or even desirable that there be
error-free reproduction of the original image. For example, if some noise is
present, then the error due to that noise will usually be significantly reduced
via some denoising method. In such a case, the small amount of error intro-
duced by lossy compression may be acceptable. Another application where
lossy compression is acceptable is in fast transmission of still images over the
Internet.

We shall concentrate on wavelet-based lossy compression of grey-level still
images. When there are 256 levels of possible intensity for each pixel, then we
shall call these images 8 bpp (bits per pixel) images. Images with 4096 grey-
levels are referred to as 12 bpp. Some brief comments on color images will
also be given, and we shall also briefly describe some wavelet-based lossless
compression methods.

1.1 Lossy compression

The methods of lossy compression that we shall concentrate on are the follow-
ing: the EZW algorithm, the SPIHT algorithm, the WDR algorithm, and
the ASWDR algorithm. These are relatively recent algorithms which achieve
some of the lowest errors per compression rate and highest perceptual quality
yet reported. After describing these algorithms in detail, we shall list some
of the other algorithms that are available.

Before we examine the algorithms listed above, we shall outline the basic
steps that are common to all wavelet-based image compression algorithms.
The five stages of compression and decompression are shown in Figs. 1 and
2. All of the steps shown in the compression diagram are invertable, hence
lossless, except for the Quantize step. Quantizing refers to a reduction of
the precision of the floating point values of the wavelet transform, which are
typically either 32-bit or 64-bit floating point numbers. To use less bits in
the compressed transform—which is necessary if compression of 8 bpp or 12
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bpp images is to be achieved—these transform values must be expressed with
less bits for each value. This leads to rounding error. These approximate,
quantized, wavelet transforms will produce approximations to the images
when an inverse transform is performed. Thus creating the error inherent in
lossy compression.

Image →
Wavelet
Transform

→ Quantize ↔ Encode →
Compressed
Image

Figure 1: Compression of an image

Compresssed
Image

→ Decode ↔
Approximate
Wavelet
Transform

→
Inverse
Wavelet
Transform

→
Round off to
integer values,
create Image

Figure 2: Decompression of an image

The relationship between the Quantize and the Encode steps, shown in
Fig. 1, is the crucial aspect of wavelet transform compression. Each of the
algorithms described below takes a different approach to this relationship.

The purpose served by the Wavelet Transform is that it produces a large
number of values having zero, or near zero, magnitudes. For example, con-
sider the image shown in Fig. 3(a), which is called Lena. In Fig. 3(b), we
show a 7-level Daub 9/7 wavelet transform of the Lena image. This transform
has been thresholded, using a threshold of 8. That is, all values whose mag-
nitudes are less than 8 have been set equal to 0, they appear as a uniformly
grey background in the image in Fig. 3(b). These large areas of grey back-
ground indicate that there is a large number of zero values in the thresholded
transform. If an inverse wavelet transform is performed on this thresholded
transform, then the image in Fig. 3(c) results (after rounding to integer val-
ues between 0 and 255). It is difficult to detect any difference between the
images in Figs. 3(a) and (c).

The image in Fig. 3(c) was produced using only the 32, 498 non-zero values
of the thresholded transform, instead of all 262, 144 values of the original
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(a) (b) (c)

Figure 3: (a) Lena image, 8 bpp. (b) Wavelet transform of image, threshold
= 8. (c) Inverse of thresholded wavelet transform, PSNR = 39.14 dB.

transform. This represents an 8:1 compression ratio. We are, of course,
ignoring difficult problems such as how to transmit concisely the positions of
the non-zero values in the thresholded transform, and how to encode these
non-zero values with as few bits as possible. Solutions to these problems will
be described below, when we discuss the various compression algorithms.

Two commonly used measures for quantifying the error between images
are Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The
MSE between two images f and g is defined by

MSE =
1

N

∑

j,k

(f [j, k] − g[j, k])2 (1)

where the sum over j, k denotes the sum over all pixels in the images, and N
is the number of pixels in each image. For the images in Figs. 3(a) and (c),
the MSE is 7.921. The PSNR between two (8 bpp) images is, in decibels,

PSNR = 10 log10

(

2552

MSE

)

. (2)

PSNR tends to be cited more often, since it is a logarithmic measure, and
our brains seem to respond logarithmically to intensity. Increasing PSNR
represents increasing fidelity of compression. For the images in Figs. 3(a)
and (c), the PSNR is 39.14 dB. Generally, when the PSNR is 40 dB or larger,
then the two images are virtually indistinguishable by human observers. In
this case, we can see that 8:1 compression should yield an image almost
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identical to the original. The methods described below do in fact produce
such results, with even greater PSNR than we have just achieved with our
crude approach.
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(b) 3-level

Figure 4: Scanning for wavelet transforms: zigzag through all-lowpass sub-
band, column scan through vertical subbands, row scan through horizontal
subbands, zigzag through diagonal subbands. (a) and (b): Order of scanned
elements for 2-level and 3-level transforms of 8 by 8 image.

Before we begin our treatment of various “state of the art” algorithms, it
may be helpful to briefly outline a “baseline” compression algorithm of the
kind described in [1] and [2]. This algorithm has two main parts.

First, the positions of the significant transform values—the ones having
larger magnitudes than the threshold T—are determined by scanning through
the transform as shown in Fig. 4. The positions of the significant values are
then encoded using a run-length method. To be precise, it is necessary to
store the values of the significance map:

s(m) =
{

0 if |w(m)| < T
1 if |w(m)| ≥ T ,

(3)

where m is the scanning index, and w(m) is the wavelet transform value at
index m. From Fig. 3(b) we can see that there will be long runs of s(m) = 0.
If the scan order illustrated in Fig. 4 is used, then there will also be long
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runs of s(m) = 1. The positions of significant values can then be concisely
encoded by recording sequences of 6-bits according to the following pattern:

0 a b c d e: run of 0 of length (a b c d e)2

1 a b c d e: run of 1 of length (a b c d e)2.

A lossless compression, such as Huffman or arithmetic compression, of these
data is also performed for a further reduction in bits.

Second, the significant values of the transform are encoded. This can be
done by dividing the range of transform values into subintervals (bins) and
rounding each transform value into the midpoint of the bin in which it lies.
In Fig. 5 we show the histogram of the frequencies of significant transform
values lying in 512 bins for the 7-level Daub 9/7 transform of Lena shown
in Fig. 3(b). The extremely rapid drop in the frequencies of occurrence
of higher transform magnitudes implies that the very low-magnitude values,
which occur much more frequently, should be encoded using shorter length bit
sequences. This is typically done with either Huffman encoding or arithmetic
coding. If arithmetic coding is used, then the average number of bits needed
to encode each significant value in this case is about 1 bit.

Figure 5: Histogram for 512 bins for thresholded transform of Lena

We have only briefly sketched the steps in this baseline compression al-
gorithm. More details can be found in [1] and [2].

Our purpose in discussing the baseline compression algorithm was to in-
troduce some basic concepts, such as scan order and thresholding, which are
needed for our examination of the algorithms to follow. The baseline algo-
rithm was one of the first to be proposed using wavelet methods [3]. It suffers
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from some defects which later algorithms have remedied. For instance, with
the baseline algorithm it is very difficult, if not impossible, to specify in ad-
vance the exact compression rate or the exact error to be achieved. This is a
serious defect. Another problem with the baseline method is that it does not
allow for progressive transmission. In other words, it is not possible to send
successive data packets (over the Internet, say) which produce successively
increased resolution of the received image. Progressive transmission is vital
for applications that include some level of interaction with the receiver.

Let us now turn to these improved wavelet image compression algorithms.
The algorithms to be discussed are the EZW algorithm, the SPIHT algo-
rithm, the WDR algorithm, and the ASWDR algorithm.

1.2 EZW algorithm

The EZW algorithm was one of the first algorithms to show the full power
of wavelet-based image compression. It was introduced in the groundbreak-
ing paper of Shapiro [4]. We shall describe EZW in some detail because a
solid understanding of it will make it much easier to comprehend the other
algorithms we shall be discussing. These other algorithms build upon the
fundamental concepts that were first introduced with EZW.

Our discussion of EZW will be focused on the fundamental ideas underly-
ing it; we shall not use it to compress any images. That is because it has been
superseded by a far superior algorithm, the SPIHT algorithm. Since SPIHT
is just a highly refined version of EZW, it makes sense to first describe EZW.

EZW stands for Embedded Zerotree Wavelet. We shall explain the terms
Embedded, and Zerotree, and how they relate to Wavelet-based compression.
An embedded coding is a process of encoding the transform magnitudes that
allows for progressive transmission of the compressed image. Zerotrees are
a concept that allows for a concise encoding of the positions of significant
values that result during the embedded coding process. We shall first discuss
embedded coding, and then examine the notion of zerotrees.

The embedding process used by EZW is called bit-plane encoding. It
consists of the following five-step process:

Bit-plane encoding

Step 1 (Initialize). Choose initial threshold, T = T0, such that all transform
values satisfy |w(m)| < T0 and at least one transform value satisfies |w(m)| ≥
T0/2.
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Step 2 (Update threshold). Let Tk = Tk−1/2.

Step 3 (Significance pass). Scan through insignificant values using baseline
algorithm scan order. Test each value w(m) as follows:

If |w(m)| ≥ Tk, then

Output sign of w(m)

Set wQ(m) = Tk

Else if |w(m)| < Tk then

Let wQ(m) retain its initial value of 0.

Step 4 (Refinement pass). Scan through significant values found with higher
threshold values Tj , for j < k (if k = 1 skip this step). For each significant
value w(m), do the following:

If |w(m)| ∈ [wQ(m), wQ(m) + Tk), then

Output bit 0

Else if |w(m)| ∈ [wQ(m) + Tk, wQ(m) + 2Tk), then

Output bit 1

Replace value of wQ(m) by wQ(m) + Tk.

Step 5 (Loop). Repeat steps 2 through 4.

This bit-plane encoding procedure can be continued for as long as necessary
to obtain quantized transform magnitudes wQ(m) which are as close as de-
sired to the transform magnitudes |w(m)|. During decoding, the signs and
the bits output by this method can be used to construct an approximate
wavelet transform to any desired degree of accuracy. If instead, a given com-
pression ratio is desired, then it can be achieved by stopping the bit-plane
encoding as soon as a given number of bits (a bit budget) is exhausted. In
either case, the execution of the bit-plane encoding procedure can terminate
at any point (not just at the end of one of the loops).

As a simple example of bit-plane encoding, suppose that we just have two
transform values w(1) = −9.5 and w(2) = 42. For an initial threshold, we set
T0 = 64. During the first loop, when T1 = 32, the output is the sign of w(2),
and the quantized transform magnitudes are wQ(1) = 0 and wQ(2) = 32.
For the second loop, T2 = 16, and there is no output from the significance
pass. The refinement pass produces the bit 0 because w(2) ∈ [32, 32 + 16).
The quantized transform magnitudes are wQ(1) = 0 and wQ(2) = 32. During
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the third loop, when T3 = 8, the significance pass outputs the sign of w(1).
The refinement pass outputs the bit 1 because w(2) ∈ [32 + 8, 32 + 16). The
quantized transform magnitudes are wQ(1) = 8 and wQ(2) = 40.

It is not hard to see that after n loops, the maximum error between the

transform values and their quantized counterparts is less than T0/2
n. It fol-

lows that we can reduce the error to as small a value as we wish by performing
a large enough number of loops. For instance, in the simple example just
described, with seven loops the error is reduced to zero. The output from
these seven loops, arranged to correspond to w(1) and w(2), is

w(1): − 0 0 1 1
w(2): + 0 1 0 1 0 0

Notice that w(2) requires seven symbols, but w(1) only requires five.
Bit-plane encoding simply consists of computing binary expansions—

using T0 as unit—for the transform values and recording in magnitude order

only the significant bits in these expansions. Because the first significant bit
is always 1, it is not encoded. Instead the sign of the transform value is
encoded first. This coherent ordering of encoding, with highest magnitude
bits encoded first, is what allows for progressive transmission.

Wavelet transforms are particularly well-adapted for bit-plane encoding.1

This is because wavelet transforms of images of natural scenes often have
relatively few high-magnitude values, which are mostly found in the highest
level subbands. These high-magnitude values are first coarsely approximated
during the initial loops of the bit-plane encoding. Thereby producing a low-
resolution, but often recognizable, version of the image. Subsequent loops
encode lower magnitude values and refine the high magnitude values. This
adds further details to the image and refines existing details. Thus progres-
sive transmission is possible, and encoding/decoding can cease once a given
bit budget is exhausted or a given error target is achieved.

Now that we have described the embedded coding of wavelet transform
values, we shall describe the zerotree method by which EZW transmits the
positions of significant transform values. The zerotree method gives an im-
plicit, very compact, description of the location of significant values by cre-
ating a highly compressed description of the location of insignificant values.
For many images of natural scenes, such as the Lena image for example,
insignificant values at a given threshold T are organized in zerotrees.

1Although other transforms, such as the block Discrete Cosine Transform, can also be
bit-plane encoded.
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To define a zerotree we first define a quadtree. A quadtree is a tree of
locations in the wavelet transform with a root [i, j], and its children located
at [2i, 2j], [2i+1, 2j], [2i, 2j+1], and [2i+1, 2j+1], and each of their children,
and so on. These descendants of the root reach all the way back to the 1st level
of the wavelet transform. For example, in Fig. 6(a), we show two quadtrees
(enclosed in dashed boxes). One quadtree has root at index 12 and children
at indices {41, 42, 47, 48}. This quadtree has two levels. We shall denote it by
{12 | 41, 42, 47, 48}. The other quadtree, which has three levels, has its root at
index 4, the children of this root at indices {13, 14, 15, 16}, and their children
at indices {49, 50, . . . , 64}. It is denoted by {4 | 13, . . . , 16 | 49, . . . , 64}.

Now that we have defined a quadtree, we can give a simple definition
of a zerotree. A zerotree is a quadtree which, for a given threshold T , has

insignificant wavelet transform values at each of its locations. For example,
if the threshold is T = 32, then each of the quadtrees shown in Fig. 6(a) is a
zerotree for the wavelet transform in Fig. 6(b). But if the threshold is T = 16,
then {12 | 41, 42, 47, 48} remains a zerotree, but {4 | 13, . . . , 16 | 49, . . . , 64} is
no longer a zerotree because its root value is no longer insignificant.

Zerotrees can provide very compact descriptions of the locations of in-
significant values because it is only necessary to encode one symbol, R say,
to mark the root location. The decoder can infer that all other locations
in the zerotree have insignificant values, so their locations are not encoded.

For the threshold T = 32, in the example just discussed, two R symbols are
enough to specify all 26 locations in the two zerotrees.

Zerotrees can only be useful if they occur frequently. Fortunately, with
wavelet transforms of natural scenes, the multiresolution structure of the
wavelet transform does produce many zerotrees (especially at higher thresh-
olds). For example, consider the images shown in Fig. 7. In Fig. 7(a) we show
the 2nd all-lowpass subband of a Daub 9/7 transform of the Lena image. The
image 7(b) on its right is the 3rd vertical subband produced from this all-
lowpass subband, with a threshold of 16. Notice that there are large patches
of grey pixels in this image. These represent insignificant transform values
for the threshold of 16. These insignificant values correspond to regions of
nearly constant, or nearly linearly graded, intensities in the image in 7(a).
Such intensities are nearly orthogonal to the analyzing Daub 9/7 wavelets.
Zerotrees arise for the threshold of 16 because in image 7(c)—the 2nd all-
lowpass subband—there are similar regions of constant or linearly graded
intensities. In fact, it was precisely these regions which were smoothed and
downsampled to create the corresponding regions in image 7(a). These re-

9



3 4

1 2

9 10

12 11

13 14

15 16

5 8

6 7

48 47 46 45

41 42 43 44

40 39 38 37

33 34 35 36

58 59 63 64

52 57 60 62

51 53 56 61

49 50 54 55

20 21 28 29

19 22 27 30

18 23 26 31

17 24 25 32

(a) Scan order, with two quadtrees

63 −34

−31 23

49 10

14 −13

−9 14

−25 −7

3 −12

−14 8

5 11 5 6

2 −3 6 −4

3 0 −3 2

−5 9 −1 47

0 3 −4 4

3 6 3 6

3 −2 0 4

4 6 −2 2

4 −2 3 2

5 −7 3 9

3 4 6 −1

5 18 −12 7

(b) Wavelet transform

+ −

I R

+ R

R R

R I

R R

• •

• •

• • • •

• • • •

• • I I

• • I +

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

I I • •

I I • •

(c) Threshold = 32

+ −

− +

+ R

R R

− R

R R

R R

R R

• • • •

• • • •

I I • •

I I • +

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

I I • •

I + • •

(d) Threshold = 16

Figure 6: First two stages of EZW. (a) 3-level scan order. (b) 3-level wavelet
transform. (c) Stage 1, threshold = 32. (d) Stage 2, threshold = 16.
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gions in image 7(c) produce insignificant values in the same relative locations

(the child locations) in the 2nd vertical subband shown in image 7(d).
Likewise, there are uniformly grey regions in the same relative locations

in the 1st vertical subband [see Fig. 7(f)]. Because the 2nd vertical subband in
Fig. 7(d) is magnified by a factor of two in each dimension, and the 3rd vertical
subband in 7(b) is magnified by a factor of four in each dimension, it follows
that the common regions of grey background shown in these three vertical
subbands are all zerotrees. Similar images could be shown for horizontal and
diagonal subbands, and they would also indicate a large number of zerotrees.

The Lena image is typical of many images of natural scenes, and the above
discussion gives some background for understanding how zerotrees arise in
wavelet transforms. A more rigorous, statistical discussion can be found in
Shapiro’s paper [4].

Now that we have laid the foundations of zerotree encoding, we can com-
plete our discussion of the EZW algorithm. The EZW algorithm simply
consists of replacing the significance pass in the Bit-plane encoding pro-
cedure with the following step:

EZW Step 3 (Significance pass). Scan through insignificant values using
baseline algorithm scan order. Test each value w(m) as follows:

If |w(m)| ≥ Tk, then

Output the sign of w(m)

Set wQ(m) = Tk

Else if |w(m)| < Tk then

Let wQ(m) remain equal to 0

If m is at 1st level, then

Output I

Else

Search through quadtree having root m

If this quadtree is a zerotree, then

Output R

Else

Output I.

During a search through a quadtree, values that were found to be significant
at higher thresholds are treated as zeros. All descendants of a root of a
zerotree are skipped in the rest of the scanning at this threshold.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: (a) 2nd all-lowpass subband. (b) 3rd vertical subband. (c) 1st all-
lowpass subband. (d) 2nd vertical subband. (e) Original Lena. (f) 1st vertical
subband.
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As an example of the EZW method, consider the wavelet transform shown
in Fig. 6(b), which will be scanned through using the scan order shown in
Fig. 6(a). Suppose that the initial threshold is T0 = 64. In the first loop, the
threshold is T1 = 32. The results of the first significance pass are shown in
Fig. 6(c). The coder output after this first loop would be

+ − I R + R R R R I R R I I I I I + I I (4)

corresponding to a quantized transform having just two values: ±32. With
+32 at each location marked by a plus sign in Fig. 6(c), and −32 at each
location marked by a minus sign, and 0 at all other locations. In the second
loop, with threshold T2 = 16, the results of the significance pass are indicated
in Fig. 6(d). Notice, in particular, that there is a symbol R at the position 11
in the scan order. That is because the plus sign which lies at a child location
is from the previous loop, so it is treated as zero. Hence position 11 is at the
root of a zerotree. There is also a refinement pass done in this second loop.
The output from this second loop is then

− + R R R − R R R R R R R I I I + I I I I 1 0 1 0 (5)

with corresponding quantized wavelet transform shown in Fig. 8(a). The
MSE between this quantized transform and the original transform is 48.6875.
This is a 78% reduction in error from the start of the method (when the
quantized transform has all zero values).

A couple of final remarks are in order concerning the EZW method. First,
it should be clear from the discussion above that the decoder, whose structure
is outlined in Fig. 2 above, can reverse each of the steps of the coder and
produce the quantized wavelet transform. It is standard practice for the
decoder to then round the quantized values to the midpoints of the intervals
that they were last found to belong to during the encoding process (i.e., add
half of the last threshold used to their magnitudes). This generally reduces
MSE. For instance, in the example just considered, if this rounding is done
to the quantized transform in Fig. 8(a), then the result is shown in Fig. 8(b).
The MSE is then 39.6875, a reduction of more than 18%. A good discussion
of the theoretical justification for this rounding technique can be found in
[2]. This rounding method will be employed by all of the other algorithms that

we shall discuss.

Second, since we live in a digital world, it is usually necessary to transmit
just bits. A simple encoding of the symbols of the EZW algorithm into bits
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Figure 8: (a) Quantization at end of 2nd stage, MSE = 48.6875. (b) After
rounding to midpoints, MSE = 39.6875, reduction by more than 18%.

would be to use a code such as P = 0 1, N = 0 0, R = 1 0, and I = 1 1. Since
the decoder can always infer precisely when the encoding of these symbols
ends (the significance pass is complete), the encoding of refinement bits can
simply be as single bits 0 and 1. This form of encoding is the fastest to
perform, but it does not achieve the greatest compression. In [4], a lossless
form of arithmetic coding was recommended in order to further compress the
bit stream from the encoder.

1.3 SPIHT algorithm

The SPIHT algorithm is a highly refined version of the EZW algorithm.
It was introduced in [5] and [6] by Said and Pearlman. Some of the best
results—highest PSNR values for given compression ratios—for a wide vari-
ety of images have been obtained with SPIHT. Consequently, it is probably
the most widely used wavelet-based algorithm for image compression, pro-
viding a basic standard of comparison for all subsequent algorithms.

SPIHT stands for Set Partitioning in Hierarchical Trees. The term Hi-

erarchical Trees refers to the quadtrees that we defined in our discussion of
EZW. Set Partitioning refers to the way these quadtrees divide up, partition,
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the wavelet transform values at a given threshold. By a careful analysis of
this partitioning of transform values, Said and Pearlman were able to greatly
improve the EZW algorithm, significantly increasing its compressive power.

Our discussion of SPIHT will consist of three parts. First, we shall de-
scribe a modified version of the algorithm introduced in [5]. We shall refer
to it as the Spatial-orientation Tree Wavelet (STW) algorithm. STW is es-
sentially the SPIHT algorithm, the only difference is that SPIHT is slightly
more careful in its organization of coding output. Second, we shall describe
the SPIHT algorithm. It will be easier to explain SPIHT using the concepts
underlying STW. Third, we shall see how well SPIHT compresses images.

The only difference between STW and EZW is that STW uses a different
approach to encoding the zerotree information. STW uses a state transition

model. From one threshold to the next, the locations of transform values
undergo state transitions. This model allows STW to reduce the number of
bits needed for encoding. Instead of code for the symbols R and I output by
EZW to mark locations, the STW algorithm uses states IR, IV , SR, and SV

and outputs code for state-transitions such as IR → IV , SR → SV , etc. To
define the states involved, some preliminary definitions are needed.

For a given index m in the baseline scan order, define the set D(m) as
follows. If m is either at the 1st level or at the all-lowpass level, then D(m) is
the empty set ∅. Otherwise, if m is at the jth level for j > 1, then

D(m) = {Descendents of index m in quadtree with root m}.

The significance function S is defined by

S(m) =











max
n∈D(m)

|w(n)|, if D(m) 6= ∅

∞, if D(m) = ∅.

With these preliminary definitions in hand, we can now define the states.
For a given threshold T , the states IR, IV , SR, and SV are defined by

m ∈ IR if and only if |w(m)| < T, S(m) < T (6)

m ∈ IV if and only if |w(m)| < T, S(m) ≥ T (7)

m ∈ SR if and only if |w(m)| ≥ T, S(m) < T (8)

m ∈ SV if and only if |w(m)| ≥ T, S(m) ≥ T. (9)

In Fig. 9, we show the state transition diagram for these states when a
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Figure 9: State transition diagram for STW

threshold is decreased from T to T ′ < T . Notice that once a location m
arrives in state SV , then it will remain in that state. Furthermore, there are
only two transitions from each of the states IV and SR, so those transitions
can be coded with one bit each. A simple binary coding for these state
transitions is shown in Table 1.

Old\New IR IV SR SV

IR 00 01 10 11
IV 0 1
SR 0 1
SV •

Table 1: Code for state transitions, • indicates that SV → SV transition is
certain (hence no encoding needed).

Now that we have laid the groundwork for the STW algorithm, we can
give its full description.

STW encoding

Step 1 (Initialize). Choose initial threshold, T = T0, such that all transform
values satisfy |w(m)| < T0 and at least one transform value satisfies |w(m)| ≥
T0/2. Assign all indices for the Lth level, where L is the number of levels
in the wavelet transform, to the dominant list (this includes all locations
in the all-lowpass subband as well as the horizontal, vertical, and diagonal
subbands at the Lth level). Set the refinement list of indices equal to the
empty set.

Step 2 (Update threshold). Let Tk = Tk−1/2.
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Step 3 (Dominant pass). Use the following procedure to scan through
indices in the dominant list (which can change as the procedure is executed).

Do

Get next index m in dominant list

Save old state Sold = S(m, Tk−1)

Find new state Snew = S(m, Tk) using (6)-(9)

Output code for state transition Sold → Snew

If Snew 6= Sold then do the following

If Sold 6= SR and Snew 6= IV then

Append index m to refinement list

Output sign of w(m) and set wQ(m) = Tk

If Sold 6= IV and Snew 6= SR then

Append child indices of m to dominant list

If Snew = SV then

Remove index m from dominant list

Loop until end of dominant list

Step 4 (Refinement pass). Scan through indices m in the refinement list
found with higher threshold values Tj , for j < k (if k = 1 skip this step).
For each value w(m), do the following:

If |w(m)| ∈ [wQ(m), wQ(m) + Tk), then

Output bit 0

Else if |w(m)| ∈ [wQ(m) + Tk, wQ(m) + 2Tk), then

Output bit 1

Replace value of wQ(m) by wQ(m) + Tk.

Step 5 (Loop). Repeat steps 2 through 4.

To see how STW works—and how it improves the EZW method—it helps
to reconsider the example shown in Fig. 6. In Fig. 10, we show STW states
for the wavelet transform in Fig. 6(b) using the same two thresholds as we
used previously with EZW. It is important to compare the three quadtrees
enclosed in the dashed boxes in Fig. 10 with the corresponding quadtrees
in Figs. 6(c) and (d). There is a large savings in coding output for STW
represented by these quadtrees. The EZW symbols for these three quadtrees

17



are + I I I I, − I I I I, and + R R R R. For STW, however, they are described
by the symbols + SR, −SR, and + SR, which is a substantial reduction in
the information that STW needs to encode.

SV SV

IV IR

SR IR

IR IR

IR IV

IR IR

• •

• •

• • • •

• • • •

• • IV IV

• • IV SV

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

(a) Threshold = 32

SV SV

SV SR

SV IR

IR IR

SR IV

IR IR

• •

• •

• • • •

• • • •

• • IV IV

• • IV SV

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

IV IV • •

IV SV • •

(b) Threshold = 16

Figure 10: First two stages of STW for wavelet transform in Fig. 6.

There is not much difference between STW and SPIHT. The one thing
that SPIHT does differently is to carefully organize the output of bits in the
encoding of state transitions in Table 1, so that only one bit is output at a

time. For instance, for the transition IR → SR, which is coded as 1 0 in
Table 1, SPIHT outputs a 1 first and then (after further processing) outputs
a 0. Even if the bit budget is exhausted before the second bit can be output,
the first bit of 1 indicates that there is a new significant value.

The SPIHT encoding process, as described in [6], is phrased in terms
of pixel locations [i, j] rather than indices m in a scan order. To avoid
introducing new notation, and to highlight the connections between SPIHT
and the other algorithms, EZW and STW, we shall rephrase the description
of SPIHT from [6] in term of scanning indices. We shall also slightly modify
the notation used in [6] in the interests of clarity.

First, we need some preliminary definitions. For a given set I of indices
in the baseline scan order, the significance ST [I] of I relative to a threshold
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T is defined by

ST [I] =











1, if max
n∈I

|w(n)| ≥ T

0, if max
n∈I

|w(n)| < T .
(10)

It is important to note that, for the initial threshold T0, we have ST0
[I] = 0

for all sets of indices. If I is a set containing just a single index m, then for
convenience we shall write ST [m] instead of ST [{m}].

For a succinct presentation of the method, we need the following defini-
tions of sets of indices:

D(m) = {Descendent indices of the index m}

C(m) = {Child indices of the index m}

G(m) = D(m) − C(m)

= {Grandchildren of m, i.e., descendants which are not children}.

In addition, the set H consists of indices for the Lth level, where L is the
number of levels in the wavelet transform (this includes all locations in the
all-lowpass subband as well as the horizontal, vertical, and diagonal subbands
at the Lth level). It is important to remember that the indices in the all-
lowpass subband have no descendants. If m marks a location in the all-
lowpass subband, then D(m) = ∅.

SPIHT keeps track of the states of sets of indices by means of three lists.
They are the list of insignificant sets (LIS), the list of insignificant pixels

(LIP), and the list of significant pixels (LSP). For each list a set is identified
by a single index, in the LIP and LSP these indices represent the singleton
sets {m} where m is the identifying index. An index m is called either
significant or insignificant, depending on whether the transform value w(m)
is significant or insignificant with respect to a given threshold. For the LIS,

the index m denotes either D(m) or G(m). In the former case, the index m is
said to be of type D and, in the latter case, of type G.

The following is pseudocode for the SPIHT algorithm. For simplicity, we
shall write the significance function STk

as Sk.

SPIHT encoding

Step 1 (Initialize). Choose initial threshold T0 such that all transform
values satisfy |w(m)| < T0 and at least one value satisfies |w(m)| ≥ T0/2.
Set LIP equal to H, set LSP equal to ∅, and set LIS equal to all the indices
in H that have descendants (assigning them all type D).

19



Step 2 (Update threshold). Let Tk = Tk−1/2.

Step 3 (Sorting pass). Proceed as follows:

For each m in LIP do:

Output Sk[m]

If Sk[m] = 1 then

Move m to end of LSP

Output sign of w(m); set wQ(m) = Tk

Continue until end of LIP

For each m in LIS do:

If m is of type D then

Output Sk[D(m)]

If Sk[D(m)] = 1 then

For each n ∈ C(m) do:

Output Sk[n]

If Sk[n] = 1 then

Append n to LSP

Output sign of w(n); set wQ(n) = Tk

Else If Sk[n] = 0 then

Append n to LIP

If G(m) 6= ∅ then

Move m to end of LIS as type G

Else

Remove m from LIS

Else If m is of type G then

Output Sk[G(m)]

If Sk[G(m)] = 1 then

Append C(m) to LIS, all type D indices

Remove m from LIS

Continue until end of LIS

Notice that the set LIS can undergo many changes during this procedure, it
typically does not remain fixed throughout.

Step 4 (Refinement pass). Scan through indices m in LSP found with higher
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threshold values Tj , for j < k (if k = 1 skip this step). For each value w(m),
do the following:

If |w(m)| ∈ [wQ(m), wQ(m) + Tk), then

Output bit 0

Else if |w(m)| ∈ [wQ(m) + Tk, wQ(m) + 2Tk), then

Output bit 1

Replace value of wQ(m) by wQ(m) + Tk.

Step 5 (Loop). Repeat steps 2 through 4.

It helps to carry out this procedure on the wavelet transform shown in Fig. 6.
Then one can see that SPIHT simply performs STW with the binary code for

the states in Table 1 being output one bit at a time.

Now comes the payoff. We shall see how well SPIHT performs in com-
pressing images. To do these compressions we used the public domain SPIHT
programs from [7]. In Fig. 11 we show several SPIHT compressions of the
Lena image. The original Lena image is shown in Fig. 11(f). Five SPIHT
compressions are shown with compression ratios of 128:1, 64:1, 32:1, 16:1,
and 8:1.

There are several things worth noting about these compressed images.
First, they were all produced from one file, the file containing the 1 bpp
compression of the Lena image. By specifying a bit budget, a certain bpp
value up to 1, the SPIHT decompression program will stop decoding the 1
bpp compressed file once the bit budget is exhausted. This illustrates the
embedded nature of SPIHT.

Second, the rapid convergence of the compressed images to the original
is nothing short of astonishing. Even the 64: 1 compression in Fig. 11(b) is
almost indistinguishable from the original. A close examination of the two
images is needed in order to see some differences, e.g., the blurring of details
in the top of Lena’s hat. The image in (b) would be quite acceptable for
some applications, such as the first image in a sequence of video telephone
images or as a thumbnail display within a large archive.

Third, notice that the 1 bpp image has a 40.32 dB PSNR value and
is virtually indistinguishable—even under very close examination—from the
original. Here we find that SPIHT is able to exceed the simple thresholding
compression we first discussed (see Fig. 3). For reasons of space, we cannot
show SPIHT compressions of many test images, so in Table 2 we give PSNR
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(a) 0.0625 bpp (128:1) (b) 0.125 bpp (64:1) (c) 0.25 bpp (32:1)

(d) 0.5 bpp (16:1) (e) 1.0 bpp (8:1) (f) Original, 8 bpp

Figure 11: SPIHT compressions of Lena image. PSNR values: (a) 27.96 dB.
(b) 30.85 dB. (c) 33.93 dB. (d) 37.09 dB. (e) 40.32 dB.

values for several test images [8]. These data show that SPIHT produces
higher PSNR values than the two other algorithms that we shall describe
below. SPIHT is well-known for its superior performance when PSNR is used
as the error measure. High PSNR values, however, are not the sole criteria
for the performance of lossy compression algorithms. We shall discuss other
criteria below.

Fourth, these SPIHT compressed images were obtained using SPIHT’s
arithmetic compression option. The method that SPIHT uses for arithmetic
compression is quite involved and space does not permit a discussion of the
details here. Some details are provided in [9].

Finally, it is interesting to compare SPIHT compressions with compres-
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Image/Method SPIHT WDR ASWDR
Lena, 0.5 bpp 37.09 36.45 36.67
Lena, 0.25 bpp 33.85 33.39 33.64
Lena, 0.125 bpp 30.85 30.42 30.61
Goldhill, 0.5 bpp 33.10 32.70 32.85
Goldhill, 0.25 bpp 30.49 30.33 30.34
Goldhill, 0.125 bpp 28.39 28.25 28.23
Barbara, 0.5 bpp 31.29 30.68 30.87
Barbara, 0.25 bpp 27.47 26.87 27.03
Barbara, 0.125 bpp 24.77 24.30 24.52
Airfield, 0.5 bpp 28.57 28.12 28.36
Airfield, 0.25 bpp 25.90 25.49 25.64
Airfield, 0.125 bpp 23.68 23.32 23.50

Table 2: PSNR values, with arithmetic compression

sions obtained with the JPEG method.2 The JPEG method is a sophisticated
implementation of block Discrete Cosine Transform encoding [10]. It is used
extensively for compression of images, especially for transmission over the
Internet. In Fig. 12, we compare compressions of the Lena image obtained
with JPEG and with SPIHT at three different compression ratios. (JPEG
does not allow for specifying the bpp value in advance; the 59:1 compression
was the closest we could get to 64:1.) It is clear from these images that
SPIHT is far superior to JPEG. It is better both in perceptual quality and
in terms of PSNR. Notice, in particular, that the 59:1 JPEG compression is
very distorted (exhibiting “blocking” artifacts stemming from coarse quan-
tization within the blocks making up the block DCT used by JPEG). The
SPIHT compression, even at the slightly higher ratio of 64:1, exhibits none
of these objectionable features. In fact, for quick transmission of a thumb-
nail image (say, as part of a much larger webpage), this SPIHT compression
would be quite acceptable. The 32:1 JPEG image might be acceptable for
some applications, but it also contains some blocking artifacts. The 32:1
SPIHT compression is almost indistinguishable (at these image sizes) from
the original Lena image. The 16:1 compressions for both methods are nearly

2JPEG stands for Joint Photographic Experts Group, a group of engineers who devel-
oped this compression method.
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indistinguishable. In fact, they are both nearly indistinguishable from the
original Lena image.

Although we have compared JPEG with SPIHT using only one image, the
results we have found are generally valid. SPIHT compressions are superior
to JPEG compressions both in perceptual quality and in PSNR values. In
fact, all of the wavelet-based image compression techniques that we discuss
here are superior to JPEG. Hence, we shall not make any further comparisons
with the JPEG method.

(a) JPEG 59:1 (b) JPEG 32:1 (c) JPEG 16:1

(d) SPIHT 64:1 (e) SPIHT 32:1 (f) SPIHT 16:1

Figure 12: Comparison of JPEG and SPIHT compressions of Lena image.
PSNR values: (a) 24.16 dB. (b) 30.11 dB. (c) 34.12 dB. (d) 30.85 dB. (e)
33.93 dB. (f) 37.09 dB.
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1.4 WDR Algorithm

One of the defects of SPIHT is that it only implicitly locates the position
of significant coefficients. This makes it difficult to perform operations, such
as region selection on compressed data, which depend on the exact position
of significant transform values. By region selection, also known as region of

interest (ROI), we mean selecting a portion of a compressed image which
requires increased resolution. This can occur, for example, with a portion of
a low resolution medical image that has been sent at a low bpp rate in order
to arrive quickly.

Such compressed data operations are possible with the Wavelet Difference

Reduction (WDR) algorithm of Tian and Wells [11]–[13]. The term difference

reduction refers to the way in which WDR encodes the locations of significant
wavelet transform values, which we shall describe below. Although WDR will
not typically produce higher PSNR values than SPIHT (see Table 2), we shall
see that WDR can produce perceptually superior images, especially at high
compression ratios.

The only difference between WDR and the Bit-plane encoding de-
scribed above is in the significance pass. In WDR, the output from the sig-
nificance pass consists of the signs of significant values along with sequences
of bits which concisely describe the precise locations of significant values.
The best way to see how this is done is to consider a simple example.

Suppose that the significant values are w(2) = +34.2, w(3) = −33.5,
w(7) = +48.2, w(12) = +40.34, and w(34) = −54.36. The indices for these
significant values are 2, 3, 7, 12, and 34. Rather than working with these
values, WDR works with their successive differences: 2, 1, 4, 5, 22. In this
latter list, the first number is the starting index and each successive number
is the number of steps needed to reach the next index. The binary expansions
of these successive differences are (10)2, (1)2, (100)2, (101)2, and (10110)2.
Since the most significant bit for each of these expansions is always 1, this bit
can be dropped and the signs of the significant transform values can be used
instead as separators in the symbol stream. The resulting symbol stream for
this example is then +0 − +00 + 01 − 0110.

When this most significant bit is dropped, we shall refer to the binary
expansion that remains as the reduced binary expansion. Notice, in partic-
ular, that the reduced binary expansion of 1 is empty. The reduced binary
expansion of 2 is just the 0 bit, the reduced binary expansion of 3 is just the
1 bit, and so on.
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The WDR algorithm simply consists of replacing the significance pass in
the Bit-plane encoding procedure with the following step:

WDR Step 3 (Significance pass). Perform the following procedure on the
insignificant indices in the baseline scan order:

Initialize step-counter C = 0

Let Cold = 0

Do

Get next insignificant index m

Increment step-counter C by 1

If |w(m)| ≥ Tk then

Output sign w(m) and set wQ(m) = Tk

Move m to end of sequence of significant indices

Let n = C − Cold

Set Cold = C

If n > 1 then

Output reduced binary expansion of n

Else if |w(m)| < Tk then

Let wQ(m) retain its initial value of 0.

Loop until end of insignificant indices

Output end-marker

The output for the end-marker is a plus sign, followed by the reduced binary
expansion of n = C + 1 − Cold, and a final plus sign.

It is not hard to see that WDR is of no greater computational complexity
than SPIHT. For one thing, WDR does not need to search through quadtrees
as SPIHT does. The calculations of the reduced binary expansions adds some
complexity to WDR, but they can be done rapidly with bit-shift operations.
As explained in [11]–[13], the output of the WDR encoding can be arithmeti-
cally compressed. The method that they describe is based on the elementary
arithmetic coding algorithm described in [14]. This form of arithmetic coding
is substantially less complex (at the price of poorer performance) than the
arithmetic coding employed by SPIHT.

As an example of the WDR algorithm, consider the scan order and wavelet
transform shown in Fig. 6. For the threshold T1 = 32, the significant values
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are w(1) = 63, w(2) = −34, w(5) = 49, and w(36) = 47. The output of the
WDR significance pass will then be the following string of symbols:

+ − + 1 + 1 1 1 1 + 1 1 0 1 +

which compares favorably with the EZW output in Eq. (4). The last six
symbols are the code for the end-marker. For the threshold T2 = 16, the new
significant values are w(3) = −31, w(4) = 23, w(9) = −25, and w(24) = 18.
Since the previous indices 1, 2, 5, and 36, are removed from the sequence of
insignificant indices, the values of n in the WDR significance pass will be 1,
1, 4, and 15. In this case, the value of n for the end-marker is 40. Adding on
the four refinement bits, which are the same as in Eq. (5), the WDR output
for this second threshold is

− + − 0 0 + 1 1 1 + 0 1 0 0 0 + 1 0 1 0

which is also a smaller output than the corresponding EZW output. It is
also clear that, for this simple case, WDR does not produce as compact an
output as STW does.

As an example of WDR performance for a natural image, we show in
Fig. 13 several compressions of the Lena image. These compressions were
produced with the free software [15].

There are a couple things to observe about these compressions. First,
the PSNR values are lower than for SPIHT. This is typically the case. In
Table 2 we compare PSNR values for WDR and for SPIHT on several images
at various compression ratios. In every case, SPIHT has higher PSNR values.

Second, at high compression ratios, the visual quality of WDR compres-
sions of Lena are superior to those of SPIHT. For example, the 0.0625 bpp
and 0.125 bpp compressions have higher resolution with WDR. This is easier
to see if the images are magnified as in Fig. 14. At 0.0625 bpp, the WDR
compression does a better job in preserving the shape of Lena’s nose and in
retaining some of the striping in the band around her hat. Similar remarks
apply to the 0.125 bpp compressions. SPIHT, however, does a better job in
preserving parts of Lena’s eyes. These observations point to the need for an
objective, quantitative measure of image quality.

There is no universally accepted objective measure for image quality. We
shall now describe a simple measure that we have found useful. There is some
evidence that the visual system of humans concentrates on analyzing edges in
images [16], [17]. To produce an image that retains only edges, we proceed as
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(a) 0.0625 bpp (128:1) (b) 0.125 bpp (64:1) (c) 0.25 bpp (32:1)

(d) 0.5 bpp (16:1) (e) 1.0 bpp (8:1) (f) Original, 8 bpp

Figure 13: WDR compressions of Lena image. PSNR values: (a) 27.63 dB.
(b) 30.42 dB. (c) 33.39 dB. (d) 36.45 dB. (e) 39.62 dB.

follows. First, a 3-level Daub 9/7 transform of an image f is created. Second,
the all-lowpass subband is subtracted away from this transform. Third, an
inverse transform is performed on the remaining part of the transform. This
produces a highpass filtered image, which exhibits edges from the image f . A
similar highpass filtered image is created from the compressed image. Both
of these highpass filtered images have mean values that are approximately
zero. We define the edge correlation γ3 by

γ3 =
σc

σo

where σc denotes the standard deviation of the values of the highpass filtered
version of the compressed image, and σo denotes the standard deviation of the
values of the highpass filtered version of the original image. Thus γ3 measures
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(a) Original (b) SPIHT, 0.0625 bpp (c) WDR, 0.0625 bpp

(d) Original (e) SPIHT, 0.125 bpp (f) WDR, 0.125 bpp

Figure 14: SPIHT and WDR compressions of Lena at low bpp.

how well the compressed image captures the variation of edge details in the
original image.

Using this edge correlation measure, we obtained the results shown in Ta-
ble 3. In every case, the WDR compressions exhibit higher edge correlations
than the SPIHT compressions. These numerical results are also consistent
with the increased preservation of details within WDR images, and with the
informal reports of human observers.

Although WDR is simple, competitive with SPIHT in PSNR values, and
often provides better perceptual results, there is still room for improvement.
We now turn to a recent enhancement of the WDR algorithm.
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Image/Method SPIHT WDR ASWDR
Lena, 0.5 bpp .966 .976 .978
Lena, 0.25 bpp .931 .946 .951
Lena, 0.125 bpp .863 .885 .894
Goldhill, 0.5 bpp .920 .958 .963
Goldhill, 0.25 bpp .842 .870 .871
Goldhill, 0.125 bpp .747 .783 .781
Barbara, 0.5 bpp .932 .955 .959
Barbara, 0.25 bpp .861 .894 .902
Barbara, 0.125 bpp .739 .767 .785
Airfield, 0.5 bpp .922 .939 .937
Airfield, 0.25 bpp .857 .871 .878
Airfield, 0.125 bpp .766 .790 .803

Table 3: Edge correlations, with arithmetic compression

1.5 ASWDR algorithm

One of the most recent image compression algorithms is the Adaptively

Scanned Wavelet Difference Reduction (ASWDR) algorithm of Walker [18].
The adjective adaptively scanned refers to the fact that this algorithm modi-
fies the scanning order used by WDR in order to achieve better performance.

ASWDR adapts the scanning order so as to predict locations of new
significant values. If a prediction is correct, then the output specifying that
location will just be the sign of the new significant value—the reduced binary
expansion of the number of steps will be empty. Therefore a good prediction
scheme will significantly reduce the coding output of WDR.

The prediction method used by ASWDR is the following: If w(m) is sig-

nificant for threshold T , then the values of the children of m are predicted to

be significant for half-threshold T/2. For many natural images, this predic-
tion method is a reasonably good one. As an example, in Fig. 15 we show
two vertical subbands for a Daub 9/7 wavelet transform of the Lena image.
The image in Fig. 15(a) is of those significant values in the 2nd level ver-
tical subband for a threshold of 16 (significant values shown in white). In
Fig. 15(b), we show the new significant values in the 1st vertical subband for
the half-threshold of 8. Notice that there is a great deal of similarity in the
two images. Since the image in Fig. 15(a) is magnified by two in each dimen-
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(a) (b)

Figure 15: (a) Significant values, 2nd vertical subband, threshold 16. (b) New

significant values, 1st vertical subband, threshold 8.

sion, its white pixels actually represent the predictions for the locations of
new significant values in the 1st vertical subband. Although these predictions
are not perfectly accurate, there is a great deal of overlap between the two
images. Notice also how the locations of significant values are highly corre-
lated with the location of edges in the Lena image. The scanning order of
ASWDR dynamically adapts to the locations of edge details in an image, and
this enhances the resolution of these edges in ASWDR compressed images.

A complete validation of the prediction method just described would re-
quire assembling statistics for a large number of different subbands, different
thresholds, and different images. Rather than attempting such an a priori

argument (see [19]), we shall instead argue from an a posteriori standpoint.
We shall present statistics that show that the prediction scheme employed by
ASWDR does, in fact, encode more significant values than are encoded by
WDR for a number of different images. As the pseudocode presented below
will show, the only difference between ASWDR and WDR is in the predictive
scheme employed by ASWDR to create new scanning orders. Consequently,
if ASWDR typically encodes more values than WDR does, this must be due
to the success of the predictive scheme.

In Table 4 we show the numbers of significant values encoded by WDR
and ASWDR for four different images. In almost every case, ASWDR was
able to encode more values than WDR. This gives an a posteriori validation
of the predictive scheme employed by ASWDR.

We now present the pseudocode description of ASWDR encoding. Notice
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Image\Method WDR ASWDR % increase
Lena, 0.125 bpp 5, 241 5, 458 4.1%
Lena, 0.25 bpp 10, 450 11, 105 6.3%
Lena, 0.5 bpp 20, 809 22, 370 7.5%
Goldhill, 0.125 bpp 5, 744 5, 634 −1.9%
Goldhill, 0.25 bpp 10, 410 10, 210 −1.9%
Goldhill, 0.5 bpp 22, 905 23, 394 2.1%
Barbara, 0.125 bpp 5, 348 5, 571 4.2%
Barbara, 0.25 bpp 11, 681 12, 174 4.2%
Barbara, 0.5 bpp 23, 697 24, 915 5.1%
Airfield, 0.125 bpp 5, 388 5, 736 6.5%
Airfield, 0.25 bpp 10, 519 11, 228 6.7%
Airfield, 0.5 bpp 19, 950 21, 814 9.3%

Table 4: Number of significant values encoded, no arithmetic coding

that the significance pass portion of this procedure is the same as the WDR
significance pass described above, and that the refinement pass is the same
as for Bit-plane encoding (hence the same as for WDR). The one new
feature is the insertion of a step for creating a new scanning order.

ASWDR encoding

Step 1 (Initialize). Choose initial threshold, T = T0, such that all transform
values satisfy |w(m)| < T0 and at least one transform value satisfies |w(m)| ≥
T0/2. Set the initial scan order to be the baseline scan order.

Step 2 (Update threshold). Let Tk = Tk−1/2.

Step 3 (Significance pass). Perform the following procedure on the insignif-
icant indices in the scan order:

Initialize step-counter C = 0

Let Cold = 0

Do

Get next insignificant index m

Increment step-counter C by 1

If |w(m)| ≥ Tk then

32



(a) 0.0625 bpp (128:1) (b) 0.125 bpp (64:1) (c) 0.25 bpp (32:1)

(d) 0.5 bpp (16:1) (e) 1.0 bpp (8:1) (f) Original, 8 bpp

Figure 16: ASWDR compressions of Lena image. PSNR values: (a) 27.73
dB. (b) 30.61 dB. (c) 33.64 dB. (d) 36.67 dB. (e) 39.90 dB.

Output sign w(m) and set wQ(m) = Tk

Move m to end of sequence of significant indices

Let n = C − Cold

Set Cold = C

If n > 1 then

Output reduced binary expansion of n

Else if |w(m)| < Tk then

Let wQ(m) retain its initial value of 0.

Loop until end of insignificant indices

Output end-marker as per WDR Step 3

33



Step 4 (Refinement pass). Scan through significant values found with higher
threshold values Tj , for j < k (if k = 1 skip this step). For each significant
value w(m), do the following:

If |w(m)| ∈ [wQ(m), wQ(m) + Tk), then

Output bit 0

Else if |w(m)| ∈ [wQ(m) + Tk, wQ(m) + 2Tk), then

Output bit 1

Replace value of wQ(m) by wQ(m) + Tk.

Step 5 (Create new scan order). For each level j in the wavelet transform
(except for j = 1), scan through the significant values using the old scan
order. The initial part of the new scan order at level j − 1 consists of the
indices for insignificant values corresponding to the child indices of these
level j significant values. Then, scan again through the insignificant values
at level j using the old scan order. Append to the initial part of the new
scan order at level j − 1 the indices for insignificant values corresponding to
the child indices of these level j significant values. Note: No change is made
to the scan order at level L, where L is the number of levels in the wavelet
transform.

Step 6 (Loop). Repeat steps 2 through 5.

The creation of the new scanning order only adds a small degree of com-
plexity to the original WDR algorithm. Moreover, ASWDR retains all of the
attractive features of WDR: simplicity, progressive transmission capability,
and ROI capability.

In Fig. 16 we show how ASWDR performs on the Lena image. The
PSNR values for these images are slightly better than those for WDR, and
almost as good as those for SPIHT. More importantly, the perceptual quality
of ASWDR compressions are better than SPIHT compressions and slightly
better than WDR compressions. This is especially true at high compression
ratios. In Fig. 17 we show magnifications of 128:1 and 64:1 compressions
of the Lena image. The ASWDR compressions better preserve the shape of
Lena’s nose, and details of her hat, and show less distortion along the side of
her left cheek (especially for the 0.125 bpp case). These subjective observa-
tions are borne out by the edge correlations in Table 3. In almost every case,
the ASWDR compressions produce slightly higher edge correlation values.

As a further example of the superior performance of ASWDR at high
compression ratios, in Fig. 18 we show compressions of the Airfield image at
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(a) SPIHT (b) WDR (c) ASWDR

(d) SPIHT (e) WDR (f) ASWDR

Figure 17: SPIHT, WDR, and ASWDR compressions of Lena at low bpp.
(a)–(c) 0.0625 bpp, 128:1. (d)–(f) 0.125 bpp, 64:1.

128:1. The WDR and ASWDR algorithms preserve more of the fine details
in the image. Look especially along the top of the images: SPIHT erases
many fine details such as the telephone pole and two small square structures
to the right of the thin black rectangle. These details are preserved, at least
partially, by both WDR and ASWDR. The ASWDR image does the best job
in retaining some structure in the telephone pole. ASWDR is also superior
in preserving the structure of the swept-back winged aircraft, especially its
thin nose, located to the lower left of center. These are only a few of the
many details in the airplane image which are better preserved by ASWDR.

As quantitative support for the superiority of ASWDR in preserving edge
details, we show in Table 5 the values for three different edge correlations γk,
k = 3, 4, and 5. Here k denotes how many levels in the Daub 9/7 wavelet
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(a) Original (b) SPIHT

(c) WDR (d) ASWDR

Figure 18: Comparisons of 128:1 compressions of airfield image

transform were used. A higher value of k means that edge detail at lower
resolutions was considered in computing the edge correlation. These edge
correlations show that ASWDR is superior over several resolution levels in
preserving edges in the airfield image at the low bit rate of 0.0625 bpp.

High compression ratio images like these are used in reconnaissance and
in medical applications, where fast transmission and ROI (region selection)
are employed, as well as multi-resolution detection. The WDR and ASWDR
algorithms do allow for ROI while SPIHT does not. Furthermore, their
superior performance in displaying edge details at low bit rates facilitates
multi-resolution detection.

Further research is being done on improving the ASWDR algorithm. One
important enhancement will be the incorporation of an improved predictive
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Corr./Method SPIHT WDR ASWDR
γ3 .665 .692 .711
γ4 .780 .817 .827
γ5 .845 .879 .885

Table 5: Edge correlations for 128:1 compressions of Airfield image

scheme, based on weighted values of neighboring transform magnitudes as
described in [19].

1.6 Lossless compression

A novel aspect of the compression/decompression methods diagrammed in
Figs. 1 and 2 is that integer-to-integer wavelet transforms can be used in place
of the ordinary wavelet transforms (such as Daub 9/7) described so far. An
integer-to-integer wavelet transform produces an integer-valued transform
from the grey-scale, integer-valued image [20]. Since n loops in Bit-plane
encoding reduces the quantization error to less than T0/2

n, it follows that
once 2n is greater than T0, there will be zero error. In other words, the
bit-plane encoded transform will be exactly the same as the original wavelet
transform, hence lossless encoding is achieved (with progressive transmission
as well). Of course, for many indices, the zero error will occur sooner than
with the maximum number of loops n. Consequently, some care is needed
in order to efficiently encode the minimum number of bits in each binary
expansion. A discussion of how SPIHT is adapted to achieve lossless encoding
can be found in [9]. The algorithms WDR and ASWDR can also be adapted
in order to achieve lossless encoding, but public versions of such adaptations
are not yet available. (When they are released, they will be accessible at
[15].)

1.7 Color images

Following the standard practice in image compression research, we have con-
centrated here on methods of compressing grey-scale images. For color im-
ages, this corresponds to compressing the intensity portion of the image.
That is, if the color image is a typical RGB image, with 8 bits for Red,
8 bits for Green, and 8 bits for Blue, then the intensity I is defined by
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I = (R + B + G)/3, which rounds to an 8-bit grey-scale image. The human
eye is most sensitive to variations in intensity, so the most difficult part of
compressing a color image lies in the compressing of the intensity. Usually,
the two color “channels” are denoted Y and C and are derived from the R,
G, and B values [21]. Much greater compression can be done on the Y and C
versions of the image, since the human visual system is much less sensitive to
variations in these two variables. Each of the algorithms described above can
be modified so as to compress color images. For example, the public domain
SPIHT coder [7] does provide programs for compressing color images. For
reasons of space, we cannot describe compression of color images in any more
detail.

1.8 Other compression algorithms

There are a wide variety of wavelet-based image compression algorithms be-
sides the ones that we focused on here. Some of the most promising are
algorithms that minimize the amount of memory which the encoder and/or
decoder must use, see [22] and [23]. A new algorithm which is embedded and
which minimizes PSNR is described in [24]. Many other algorithms are cited
in the review article [1]. In evaluating the performance of any new image
compression algorithm, one must take into account not only PSNR values,
but also consider the following factors: (1) perceptual quality of the images
(edge correlation values can be helpful here), (2) whether the algorithm allows
for progressive transmission, (3) the complexity of the algorithm (including
memory usage), and (4) whether the algorithm has ROI capability.
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